- PII
- S3034533S0044466925100108-1
- DOI
- 10.7868/S303453325100108
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 65 / Issue number 10
- Pages
- 1746-1758
- Abstract
- In this paper, a vector three-dimensional inverse diffraction problem on a cylindrical body is solved based on a two-step method. The diffuser is filled with an inhomogeneous nonmagnetic dielectric material. The initial boundary value problem for the Maxwell system of equations is reduced to a system of integro-differential equations. A numerical method for solving a first-order equation in special classes of functions is described. A distinctive feature of the proposed numerical method is its non-iteration, in addition, a two-step method for solving the inverse problem does not require a good initial approximation. The calculation results are presented. It is shown that the two-step method is an effective approach to solving vector problems of microwave tomography.
- Keywords
- трехмерная векторная обратная задача дифракции восстановление диэлектрической проницаемости интегродифференциальное уравнение двухшаговый метод численный метод
- Date of publication
- 09.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 5
References
- 1. Романов В.Г. Обратные задачи математической физики. Монография. М.: АН СССР, 1984.
- 2. Meaney P.M., Goodwin D., Golnabi A.H., Zhou T., Pallone M., Geimer S.D., Burke G., Paulsen K.D. Clinical microwave tomographic imaging of the calcaneus: a first-in-human case study of two subjects // IEEE Trans Biomed Eng. 2012. V. 59. № 12. P. 3304–13.
- 3. Kamal A.M., Sakorikar T., Pal U.M., Pandya H.J. Engineering Approaches for Breast Cancer Diagnosis: A Review // IEEE Rev. Biomed. Eng. 2023. V. 16. P. 687–705.
- 4. Cherepenin V., Karpov A., Korjenevsky A., Kornienko V., Mazaletskaya A., Mazourov D., Meister D. A 3D electrical impedance tomography (EIT) system for breast cancer detection // Physiol Meas. 2001. V. 22. № 1. P. 9–18.
- 5. Tranchida D., Diaz J., Schön P., Schönherr H., Vancso G.J. Scanning Near-Field EllipsometryMicroscopy: imaging nanomaterials with resolution below the diffraction limit // Nanoscale. 2011. V. 3. P. 233–239.
- 6. Fleischer M. Near-field scanning optical microscopy nanoprobes // Nanotechnology Reviews. 2012. V. 1. № 4. P. 313–338.
- 7. Лаврентьев М.М., Романов В.Г., Шашлинский С.П. Некорректные задачи математической физики и анализа. М.: Наука, 1980.
- 8. Бакушинский А.Б., Гончарский А.В. Итеративные методы решения некорректных задач. М.: Наука, 1989.
- 9. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990.
- 10. Кабанихин С.И. Обратные и некорректные задачи. Учебник для студентов высших учебных заведений. Новосибирск: Сибирское научное издательство, 2009.
- 11. Medvedik M.Y., Smirnov Y.G., Tsupak A.A. Two-step method for solving inverse problem of diffraction by an inhomogeneous body // Springer Proceedings in Mathematics and Statistics 38th. In «Nonlinear and Inverse Problems in Electromagnetics — PIERS 2017». 2018. P. 83–92.
- 12. Evstigneev R.O., Medvedik M.Y. Reconstruction of Inhomogeneity Parameters by Measurements of Near Field Outside the Body // Beilina, L., Smirnov, Y. (eds) Nonlinear and Inverse Problems in Electromagnetics. PIERS PIERS 2017. Springer Proceedings in Mathematics & Statistics. 2018. V. 243. P. 29–38.
- 13. Medvedik M.Y., Smirnov Y.G., Tsupak A.A. The two-step method for determining a piecewise-continuous refractive index of a 2D scatterer by near field measurements // Inverse Problems in Science and Engineering. 2020. V. 28. № 3. P. 427–447.
- 14. Medvedik M.Y., Smirnov Y.G., Tsupak A.A. Non-iterative two-step method for solving scalar inverse 3D diffraction problem // Inverse Problems in Science and Engineering. 2020. V. 28. № 1. P. 1474–1492.
- 15. Smirnov Y.G., Tsupak A.A. Direct and inverse scalar scattering problems for the Helmholtz equation in \( \mathbb{R}^m \) // J. Inverse Ill-Posed Probl 2022. V. 30. № 1. P. 101–116.
- 16. Evstigneev R.O., Medvedik M.Y. Reconstruction of Inhomogeneities in a Hemisphere from the Field Measurements // Lobachevskii Journal of Mathematics. 2019. V. 40. № 10. P. 1653–1659.
- 17. Lapich A.O., Medvedik M.Y. Microwave Tomography Method for Solving the Inverse Problem on Cylindrical Bodies // Tech. Phys. Lett. 2024. V. 50. P. 360–364.
- 18. Lapich A.O., Medvedik M.Y. Method of generalized and combined computational grids for restoration of the parameters of inhomogeneities of a body based on the results of measurements of the electromagnetic field // Mathematical Models and Computer Simulations. 2024. V. 16. № 6. P. 806–813.
- 19. Lapich A.O., Medvedik M.Yu. Method for reconstruction the parameters of body inhomogeneities from the results of electromagnetic field measurements // Lobachevskii Journal of Mathematics. 2024. V. 45. № 10. P. 4740–4747.
- 20. Medvedik M.Y., Smirnov Y.G., Tsupak A.A. Inverse vector problem of diffraction by inhomogeneous body with a piecewise smooth permittivity // J. Inverse Ill-Posed Probl. 2024. V. 32. № 3. P. 453–465.
- 21. Colton D., Kress R. Inverse Acoustic and Electromagnetic Scattering Theory. Berlin, Heidelberg: Springer-Verlag, 2013.
- 22. Smolkin E., Smirnov Y., Snegur M. Solution of the Vector Three-Dimensional Inverse Problem on an Inhomogeneous Dielectric Hemisphere Using a Two-Step Method // Computation. 2024. V. 12. № 11. P. 213.
- 23. Samokhin A.B., Shestopalov Yu.V. Integral Equations and Iteration Methods in Electromagnetic Scattering. Berlin, Boston: De Gruyter, 2001.
- 24. Smirnov Yu.G., Tsupak A.A. Diffraction of Acoustic and Electromagnetic Waves by Screens and Inhomogeneous Solids: Mathematical Theory. RU-SCIENCE, Moscow, 2018.
- 25. Smirnov Yu.G., Tsupak A.A., Valovik D.V. On the Volume Singular Integro-differential Equation for the Electromagnetic Diffraction Problem // Applicable Analysis: An International Journal. 2017. V. 96. № 2. P. 173–189.
- 26. Smirnov Yu.G., Tsupak A.A. Existence and Uniqueness Theorems in Electromagnetic Diffraction on Systems of Lossless Dielectrics and Perfectly Conducting Screens // Applicable Analysis: An International Journal 2017. V. 96. № 8. P. 1326–1341.
- 27. Tихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. 2-е изд. М.: Наука, 1979. 288 с.