ОМНЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

О глобальной во времени разрешимости одной задачи Коши для нелинейного уравнения составного типа тепло-электрической модели

Код статьи
S3034533S0044466925080033-1
DOI
10.7868/S303453325080033
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 65 / Номер выпуска 8
Страницы
1328-1350
Аннотация
Рассмотрена задача Коши для модельного нелинейного эволюционного уравнения высокого порядка. Получены достаточные условия существования и единственности слабого глобального во времени решения задачи Коши. Получена оценка убывания решения по координатам и времени. Библ. 18.
Ключевые слова
нелинейные уравнения составного типа глобальная во времени разрешимость оценки решения
Дата публикации
22.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
12

Библиография

  1. 1. Солонников В.А. Оценки решений нестационарной линеаризованной системы уравнений Навье–Стокса // Тр. МИАН. 1964. Т. 70. С. 213–317.
  2. 2. Абдрахманов М.А. Динамика сплошной среды. Новосибирск. 1990. Т. 95. С. 3–23.
  3. 3. Абдрахманов М.А. Динамика сплошной среды. Новосибирск. 1991. Т. 101. С. 3–20.
  4. 4. Абдрахманов М.А. Об ε-регуляризации задачи Коши и полупространственной задачи для псевдопараболического уравнения в соболевских классах // Дифференц. ур-ния. 1998. Т. 34. №4. С. 486–494.
  5. 5. Свиридюк Г.А. К общей теории полугрупп операторов // УМН. 1994. Т. 49. №4. С. 47–74.
  6. 6. Загребина С.А. Начально-конечная задача для уравнений соболевского типа с сильно (L,p)-радиальным оператором // Матем. заметки ЯГУ. 2012. Т. 19. №2. С. 39–48.
  7. 7. Zamyshlyaeva A.A., Sviridyuk G.A. Nonclassical equations of mathematical physics. Linear Sobolev type equations of higher order // Вестн. Южно-Ур. ун-та. Сер. Матем. Механ. Физ. 2016. Т. 8. №4. С. 5–16.
  8. 8. Капитонов Б.В. Теория потенциала для уравнения малых колебаний вращающейся жидкости // Матем. сб. 1979. Т. 109. №4. С. 607–628.
  9. 9. Габов С.А., Свешников А.Г. Линейные задачи теории нестационарных внутренних волн. М.: Наука, 1990.
  10. 10. Габов С.А. Новые задачи математической теории волн. М.: Физматлит, 1998.
  11. 11. Плетнер Ю.Д. Фундаментальные решения операторов типа Соболева и некоторые начально-краевые задачи // Ж. вычисл. матем. матем. физ. 1992. V. 32. №12. С. 1885–1899.
  12. 12. Похожаев С.И., Митидиери Э. Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных // Тр. Матем. ин-та им. В. А. Стеклова. 2001. Т. 234. С. 3–383.
  13. 13. Галахов Е.И., Салиева О.А. Об отсутствии неотрицательных монотонных решений для некоторых коэртивных неравенств в полупространстве // Совр. матем. Фундам. напр. 2017. Т. 63. №4. С. 573–585.
  14. 14. Galakhov E.I. Some nonexistence results for quasilinear elliptic problems // J. Math. Anal. Appl. 2000. V. 252. №1. P. 256–277.
  15. 15. Крылов Н.В. Лекции по эллиптическим и параболическим уравнениям в пространствах Гельдера. Новосибирск: Научная книга, 1998.
  16. 16. Сергеев В.А., Ходаков А.М. Нелинейные тепловые модели полупроводниковых приборов. Ульяновск: УлГТУ, 2012.
  17. 17. Басс Ф.Г., Бочков В.С., Гуревич Ю.С. Электроны и фононы в ограниченных полупроводниках. М.: Наука, 1984.
  18. 18. Владимиров В.С. Уравнения математической физики. М.: Наука, 1988.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека