RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

SYMMETRIC TRIANGULAR DECOMPOSITION FOR CONSTRUCTING APPROXIMATIONS TO SOLVING THE QUADRATIC ASSIGNMENT PROBLEM

PII
S3034533S0044466925070043-1
DOI
10.7868/S303453325070043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 7
Pages
1110-1117
Abstract
The permutation matrices that arise in the process of triangular decomposition of shifted symmetric matrices with the choice of the maximum modulo leading element on the diagonal are used as initial approximations for a series of elementary permutations that improve the target value of the quadratic assignment problem. The results of testing the proposed method on 128 test tasks from QAPLIB are presented.
Keywords
квадратичная задача о назначениях симметричное треугольное разложение полный выбор ведущего элемента на диагонали
Date of publication
23.04.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Koopmans T.C., Beckmann M. Assignment problems and the location of economic activities // Econometrica. 1957. V. 25. № 1. P. 53–76.
  2. 2. Hurtado O.G., Poveda R.Ch, Moncada J. Exact and approximate sequential methods in solving the quadratic assignment problem // J. Language and Linguistic Studies. 2022. V. 18. № 3. P. 237–244.
  3. 3. Burkard R., Dell’Amico M., Martello S. Assignment problems: revised reprint. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2012.
  4. 4. Zaied A.N.H., Shawky L.A.E.-F. A survey of quadratic assignment problems // Inter. J. Comput. Appl. 2014. V. 101. № 6. P. 28–36.
  5. 5. Loiola E.M., De Abreu N.M.M., Boaventura-Netto P.O., Hahn P., Querido T. A survey for the quadratic assignment problem //Europ. J. Operat. Res. 2007. V. 176. № 2. P. 657–690.
  6. 6. Sahni S., Gonzalez T. P-complete approximation problems // J. ACM (JACM). 1976. V. 23. № 3. P. 555–565.
  7. 7. Fischetti M., Monaci M., Salvagnin D. Three ideas for the quadratic assignment problem // Operat. Res. 2012. V. 60. № 3. P. 954–964.
  8. 8. Burkard R.E., Cela E., Karisch S.E., Rendl F., Anjos M., Hahn P. QAPLIB – A Quadratic Assignment Problem Library – Problem instances and solutions, [dataset]. University of Edinburgh; Computational Optimization Research At Lehigh (2022). https://doi.org/10.7488/ds/3428 https://datashare.ed.ac.uk/handle/10283/4390 https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/
  9. 9. Hadley S.W., Rendl F., Wolkowicz H. Symmetrization of nonsymmetric quadratic assignment problems and the Hoffman-Wielandt inequality // Linear Algebra and its Applications. 1992. V. 167. P. 53–64.
  10. 10. Silva A., Coelho L.C., Darvish M. Quadratic assignment problem variants: A survey and an effective parallel memetic iterated tabu search // Europ. J. Operat. Res. 2021. V. 292. № 3. P. 1066–1084.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library