RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

Eigenvalues of non-Hermitian banded Toeplitz matrices approaching simple points of the limiting set

PII
S3034533S0044466925070011-1
DOI
10.7868/S303453325070011
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 7
Pages
1060-1076
Abstract
For large non-Hermitian banded Toeplitz matrices, it is well known that their eigenvalues cluster along a limiting set, which is formed by a finite union of closed analytic arcs. We consider general non-Hermitian banded Toeplitz matrices and extend the simple-loop method to obtain individual asymptotic expansions for eigenvalues approaching simple and non-degenerate points of the limiting set as the matrix order increases to infinity. We also develop an algorithm to effectively compute these expansions.
Keywords
матрица Тёплица асимптотическое разложение собственные значения метод простых петель
Date of publication
15.04.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Tyrtyshnikov E.E. A unifying approach to some old and new theorems on distribution and clustering // Linear Algebra Appl. 232 (1996) 1-43.
  2. 2. Böttcher A., Grudsky S.M. Spectral properties of banded Toeplitz matrices // Society for Industrial and Applied Mathematics (SIAM), 2005.
  3. 3. Böttcher A., Silbermann B. Analysis of Toeplitz operators, 2nd Edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006.
  4. 4. Grenander U., Szego G. Toeplitz forms and their applications, 2nd Edition, California Monographs in Mathematical Sciences, Chelsea Publishing Co., New York, 1984.
  5. 5. Schmidt P., Spitzer F. The Toeplitz matrices of an arbitrary Laurent polynomial // Math. Scand. 8 (1960) 15-38.
  6. 6. Böttcher A., Silbermann B. Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999.
  7. 7. Böttcher A., Gasca J., Grudsky S.M., Kozak A.V. Eigenvalue clusters of large tetradiagonal Toeplitz matrices // Integr. Equat. Oper. Th. 93, Paper No. 8 (2021).
  8. 8. Ullman J.L. A problem of Schmidt and Spitzer, Bull. Amer. Math. Soc. 73 (1967) 883-885.
  9. 9. Bogoya M., Gasca J., Grudsky S.M. Eigenvalues for a class of non-Hermitian tetradiagonal Toeplitz matrices // J. Spectr. Theory 15 (1) (2025) 441-477.
  10. 10. Böttcher A., Grudsky S.M., Maximenko E.A. Inside the eigenvalues of certain Hermitian Toeplitz band matrices // J. Comput. Appl. Math. 233 (9) (2010) 2245-2264.
  11. 11. Bogoya M., Böttcher, A., Grudsky S.M., Maximenko E.A. Asymptotics of the eigenvalues and eigenvectors of Toeplitz matrices // Sb. Mat. 208 (11) (2017) 4-28.
  12. 12. Bogoya M., Böttcher A., Grudsky S.M. Asymptotic eigenvalue expansions for toeplitz matrices with certain Fisher-Hartwig symbols // J. Math. Sci. 271 (2) (2023) 176-196.
  13. 13. Ekström S.-E., Garoni C., Serra-Capizzano S. Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? // Exper. Math. 27 (4) (2018) 478-487.
  14. 14. Ekström S.-E., Garoni C. A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices // Numer. Algorithms 80 (2019) 819-848.
  15. 15. Ekström S.-E., Vassalos P. A matrix-less method to approximate the spectrum and the spectral function of Toeplitz matrices with real eigenvalues // Numer. Algorithms 89 (2022) 701-720.
  16. 16. Widom H. Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index, in: Topics in operator theory: Ernst D. Hellinger memorial volume, Vol. 48 of Oper. Theory Adv. Appl., Birkhäuser, Basel, 1990, pp. 387-421.
  17. 17. Bolten M., Ekström S.-E., Furet I., Serra-Capizzano S. Toeplitz momentary symbols: Definition, results, and limitations in the spectral analysis of structured matrices // Linear Algebra Appl. 651 (2022) 51-82.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library