RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

MULTIGRID METHODS OF MACRO-GRID DOMAIN DECOMPOSITION

PII
S3034533S0044466925060041-1
DOI
10.7868/S303453325060041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 6
Pages
875-887
Abstract
We consider integrated multigrid domain decomposition methods (DDM-MG) for solving large systems of linear algebraic equations (SLAEs) with sparse symmetric or asymmetric matrices and multivariate boundary value problems obtained by grid approximations. The proposed algorithms are based on the construction of single-layer or two-layer macrogrids and special ordering of nodes according to their belonging to different topological primitives of the macrogrid: macro nodes, macro edges, macro faces and subareas. At coordinated numbering of vector components, the SLAU matrix in the three-dimensional case takes a block-tri-diagonal form of the fourth order. For its solution we use some method of approximate filtering in Krylov subspaces. At the same time, the solution of auxiliary systems in subspaces is carried out by multigrid methods of block incomplete factorization, on the basis of similar topology-oriented ordering of nodes, but not at the macro-, but at the micro-level, resulting in the formation of a single preconditioner of recursive-nested type. The justification of the proposed methods is carried out for Stiltjes-type matrices.
Keywords
большие разреженные СЛАУ многосеточные методы декомпозиция областей
Date of publication
27.03.2025
Year of publication
2025
Number of purchasers
0
Views
19

References

  1. 1. Dolean V., Jolivet P., Nataf F. An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementation, SIAM, Philadelphia, 2015.
  2. 2. Laevsky Y.M., Matsokin A.M. Decomposition Methods for Solving Elliptic and Parabolic Boundary Value Problems // Sib. Zh. Ind. Math. 1992. P. 361–372.
  3. 3. Vassilevski Y., Olshanskii M.A. Short Course on Multi-Grid and Domain Decomposition Methods. MAKS, Moscow, 2007.
  4. 4. Notay Y. Algebraic Multigrid for Stokes Equations // SIAM J. Sci. Comput. 2017. V. 39. P. 88–111.
  5. 5. Brandt A. Algebraic Mitigrid Teory: The Symmetric Case // J. Appl. Math. Comput. 1986. № 19. P. 23–56.
  6. 6. Olshanskii M.A. Lecture Notes on Multigrid Methods. Inst. Vychisl. Mat., Ross. Akad. Nauk, Moscow, 2012.
  7. 7. Saad Y. Iterative Mthods for Sparse Linear Systems, 2nd ed. SIAM, 2003.
  8. 8. Olshanskii M.A., Tyryshnikov E.E. Iterative Methods for Linear Systems Theory and Applications, SIAM Philadelphia, 2014.
  9. 9. Laevsky Y.M., Matsokin A.M. Decomposition Methods for Solving Elliptic and Parabolic Boundary Value Problems (in Russian). 1999. V. 2. P. 361–372.
  10. 10. Korneev V.G. Fast Domain Decomposition Algorithms for Elliptic Problems with Piecewise Variable Orthotropies. in Apel T., Steinbach O. (eds) Advanced Finite Element Methods and Applications. Lecture Notes in Applied and Computational Mechanics, Springer, Berlin, Heidelberg, 2013. V. 66. DOI: 10.1007/978-3-642-30316-6_3.
  11. 11. Ильин В.П. Итерационные предобусловленные методы в крылова: тенденции XXI в. // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 11. С. 1786–1813.
  12. 12. Reusken A. A Multigrid Method Based on Incomplete Gaussian Elimination // Numer. Linear. Alg. Appl. 1996. V. 3. P. 369–390.
  13. 13. Hackbusch W., Khoromskij B.N., Kriemann R. Direct Schur Complement Method by Domain Decomposition Based on H-Matrix Approximation // Comput. Visual. Sci. 2005. V. 8. № 3. P. 179–188. DOI: 10.1007/s00791-005-0008-3
  14. 14. Bornemann F.A., Deuflhard P. The Cascadic Multigrid Method for Elliptic Problems // Numerische Mathematik. 1996. Dec. V. 75. № 2. Р. 135–152. DOI: 10.1007/s002110050234
  15. 15. Shaidurov V.V. Some EVisitmates of the Rate of Convergence for the Cascadic Conjugate-Gradient Method // Comput. Math. Appl. 1996. V. 31. № 4. Р. 161–171. DOI: 10.1016/0898-1221(95)00228-6. Selected Topics in Numerical Methods.
  16. 16. Notay Y., Napov A. A Massively Parallel Solver for Discrete Poisson-like Problems // J. Comput. Phys. 2015. V. 281. Р. 237–250. DOI: 10.1016/j.jcp.2014.10.043
  17. 17. Ruge J.W., Stuben K. Algebraic Multigrid Multigrid Methods, 1987. Р. 73–130. DOI: 10.1137/1.9781611971057.ch4
  18. 18. Xu J., Zikatanov L. Algebraic Multigrid Methods // Acta Numerica. 2017. V. 26. Р. 591–721. DOI: 10.1017/S0962492917000083
  19. 19. Il'in V.P., Gurieva Y.L., Kozlov D.I. Parallel Domain Decomposition Methods with Graph Preconditioning. ПАВТ-23, Челябинск: Изд. ЮРГУ, 2023. С. 215–228.
  20. 20. Il'in V.P. Multigrid Incomplete Factorization Methods in Krylov Subspaces // J. Math. Sci. Springer. 2023. V. 272. Р. 523–532.
  21. 21. Batalov M., Il'in V. Multigrid Incomplete Factorization Methods in Krylov Subspaces on Unstructured Grids, Parallel Computational Technologies / ed. by L. Sokolinsky [et al.]. Cham : Springer Nature Switzerland, 2024. Р. 163–176.
  22. 22. Кузнецов Ю.А. Алгебраические многосеточные методы декомпозиции области. М., Препринт № 232 ОВМ АН СССР, 1989. С. 05–516. Springer. Cham. DOI: 10.1007/978-3-030-36592-9_41
  23. 23. Bank R., Falgout R., Jones T., Manieuffel T., McCormick S., Ruge J. Algebraic Multigrid Domain and Range Decomposition (AMG-DD)/AMG-RDJ // SIAM J. Sci. Comput. 2015. V. 37. Р. 113–136.
  24. 24. Ильин В.П. Методы и технологии конечных элементов. Новосибирск: Изд-во ИВМиМГ СО РАН, 2007. 370 с.
  25. 25. Киглингвин L.A. Error Bounds for the Arnoldi Method: A Set of Extreme Eigenpairs // J. Numer. Linear Algebra Appl. 1999. V. 296. Р. 191–211.
  26. 26. Il'in V.P. Biconjugate Direction Methods in Krylov Subspaces // J. Appl. Indust. Math. 2010. V. 4. № 1. Р. 65–78.
  27. 27. Il'in V.P., D.I. Kozlov D.I., Petukhov A.V. On the Minimal Residual Methods for Solving Diffusion-Convection SLAEs // J. Phys.: Conf. Ser. 2021. V. 2099. Р. 012005.
  28. 28. Notay Y. Flexible Conjugate Gradients // SIAM J. Sci. Comput. 2000. V. 22. Р. 1444–1460. DOI: 10.1137/S1064827599362314
  29. 29. Il'in V. Parallel Intelligent Computing in Algebraic Problems. Sokolinsky L., Zymbler M. (eds). Parallel Computational Technologies. РСТ 2021. Communications in Computer, 2021. Р. 108–117.
  30. 30. Ильин В.П. Программирование ближайшего будущего: Концепция И Прагматика // Вестник РАН. 2023. Т. 93. № 2. С. 150–161. DOI: 10.31857/S086958732302007X
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library