RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

COMPARISON OF INTERPOLATION AND MOSAIC-SKELETON METHODS FOR SOLVING INTEGRABLE EQUATIONS WITH CONVOLUTIONAL KERNEL

PII
S3034533S0044466925060036-1
DOI
10.7868/S303453325060036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 6
Pages
861-874
Abstract
The interpolation and mosaic-skeleton methods for solving the problem of potential flow of a two-dimensional plate are compared. They compress the dense matrix of the linear system arising from the solution by the collocation method on an irregular grid. The first method is based on fast Fourier transform and linear interpolation with an auxiliary uniform grid. The second one is based on block-majorange approximation of the matrix. Both approaches demonstrate time and memory efficiency, but emphasize different structures in the matrix, which affects the solution of the linear system. For the utilized implementations of the mosaic-matching methods The skeleton method solves the system faster than the interpolation method, but consumes more memory, and its running time grows much more noticeably as the size of the system increases.
Keywords
интегральные уравнения неравномерная сетка метод коллокаций быстрое преобразование Фурье мозаично-скелетонный метод
Date of publication
27.03.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Самохин А.Б. Интегральные уравнения и итерационные методы в электромагнитном рассеянии. Радио и связь, 1998.
  2. 2. Colton D., Kress R. Inverse acoustic and electromagnetic scattering theory. Berlin: Springer-Verlag, 1992.
  3. 3. Мокряков В.В. Применение метода мультипольного разложения для расчета напряженного состояния в бесконечной упругой плоскости, содержащей несколько круговых отверстий // Вычисл. механика сплошных сред. 2012. Т. 5. № 2. С. 168—177.
  4. 4. Белоцерковский С.М., Лифанов Н.К. Численные методы в сингулярных интегральных уравнениях. М.: Наука, 1985.
  5. 5. Самохин А.Б., Тыртышинков Е.Е. Численный метод решения объемных интегральных уравнений на неравномерной сетке // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 5. С. 878—884.
  6. 6. Нечепуренко Ю.М. Быстрые устойчивые алгоритмы для класса линейных дискретных преобразований // Вычисл. процессы и системы. Т. 5. М.: Наука, 1987. С. 292—301.
  7. 7. Туглубинко Ещепе. Мosaic-skeleton approximations // Calcolo. 1996. V. 33. P. 47—57.
  8. 8. Горейнов С.А., Замарашкин Н.Л., Тыртышинков Е.Е. Псев- досвещенные аппроксимации матриц // Докл. АН. 1995. Т. 343. № 2. С. 151—152.
  9. 9. Туглубинко Ещепе. Incomplete cross approximation in the mosaic-skeleton method // Computing. 2000. V. 64. P. 367—380.
  10. 10. Оселедец И.В., Тыртышинков Е.Е. Приближенное обращение матриц при решении гиперсингулярного интегрального уравнения // Ж. вычисл. матем. и матем. физ. 2005. Т. 45. № 2. С. 315—326.
  11. 11. Лифанов Н.К., Тыртышинков Е.Е. Теплицевы матрицы и сингулярные интегральные уравнения // Вычисл. процессы и системы. Т. 7. М.: Наука, 1990. С. 94—278.
  12. 12. Лифанов Н.К., Полтавский Л.Н. Обобщенные операторы Фурье и их применение к обоснованию некоторых численных методов в аэродинамике // Матем. сб. 1992. Т. 5. С. 79—114.
  13. 13. Voevodin V.V. On a method of reducing the matrix order while solving integral equations. Numerical Analysis on FORTRAN. Moscow University Press, 1979. P. 21—26.
  14. 14. Gladkov A. Integral equation solver. 2024. URL: https://github.com/agladckov/integral_equation_solver
  15. 15. Vailakhmetov B., Zhelikov D. MosaicSkeleton package (MSk), 2017. URL: https://gitlab.com/bulatral/mosaic-skeleton.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library