RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

UNDERCOMPRESSIVE DISCONTINUITIES OF A HYPERBOLIC SYSTEM OF CONSERVATION LAW EQUATIONS: FINITE-DIFFERENCE SCHEMES

PII
S3034533S0044466925050077-1
DOI
10.7868/S303453325050077
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 5
Pages
686-696
Abstract
A class of finite-difference schemes with well-controlled dissipation is used to solve equations describing long longitudinal–torsional waves in elastic rods. The governing system of equations is a hyperbolic system of conservation laws whose solutions may include undercompressive discontinuities (nonclassical discontinuities). It is well known that such solutions depend on the choice of a regularizing dissipative operator distinguishing a unique solution of the problem. In the scheme with well-controlled dissipation, the dissipative operator defined by its first differential approximation coincides up to small higher order terms with the operator used to define the solution in the continual formulation. The class of schemes under discussion has been poorly studied to date. Numerical experiments are presented that demonstrate the efficiency of this approach.
Keywords
ударные волны недосжатые разрывы диссипация численная схема
Date of publication
27.02.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Куликовский А.Г., Чугайнова А.П. Продольно-крутильные волны в нелинейно-упругих стержнях // Тр. МИАН. 2023. Т. 322. С. 157–166.
  2. 2. Dafermos C.M. Hyperbolic Conservation Laws in Continuum Physics. Berlin Heidelberg: Springer-Verlag, 2010.
  3. 3. Lax P.D. Hyperbolic systems of conservation laws// Comm. Pure Appl. Math. 1957. V. 10. P. 537–566.
  4. 4. Куликовский А.Г., Свешникова Е.И. Нелинейные волны в упругих средах. М.: Московский лицей, 1998. C. 412.
  5. 5. Гельфанд И.М. Некоторые задачи теории квазилинейных уравнений // Успехи матем. наук. 1959. Т. 14.№2. С. 87–158.
  6. 6. Beljadid A., LeFloch P.G., Mishra S., Pares C. Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form // Comm. Comput. Phys. 2017. V. 21.№4. P. 913–946.
  7. 7. Hayes B.T., Lefloch P.G. Nonclassical shocks and kinetic relations: Finite difference schemes // SIAM J. Numeric. Analys. 1998. V. 35.№6. P. 2169–2194.
  8. 8. Chalons C., LeFloch P.G. Computing undercompressive waves with the randomchoice scheme // Nonclassical shock waves. Interfaces and Free Boundaries. 2003. V. 5.№2. P. 129–158.
  9. 9. Shargatov V.A., Chugainova A.P., Kolomiytsev G.V., Nasyrov I.I., Tomasheva A.M., Gorkunov S.V., Kozhurina P.I. Why stable finite-difference schemes can converge to different solutions: analysis for the generalized hopf equation // Computation. 2024. V. 12.№4. P. 76.
  10. 10. Куликовский А.Г., Чугайнова А.П. О структурах неклассических разрывов в решениях гиперболических систем уравнений // УМН. 2022. Т. 77.№1. С. 55–90.
  11. 11. Ахиезер А.И., Любарский Г.Я., Половин Р.В. Об устойчивости ударных волн в магнитной гидродинамике // ЖЭТФ. 1959. Т. 35.№3. С. 731–737.
  12. 12. Полехина Р.Р., Савенков Е.Б. Применение схемы с хорошо контролируемой дисспацией для решения уравнений модели Капилы // Дифференц. ур-ния. 2024. Т. 60.№7. С. 937–953.
  13. 13. Cockburn B., Chi-Wang Shu. The Runge-Kutta local projection-discontinuous-Galerkin finite element method for scalar conservation laws // ESAIM: Math. Model. and Numeric. Analys. 1991. Т. 25.№3. С. 337–361.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library