RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

DENTIFICATION OF SPLIT FACTORS IN PEDESTRIAN FLOWS MODELING

PII
S3034533S0044466925040135-1
DOI
10.7868/S303453325040135
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 4
Pages
590-602
Abstract
The paper is devoted to mathematical modeling of indoor pedestrian flows. The model under consideration is an analogue of the CTM transport macromodel. The current work explores the possibility of identifying split factors that were previously considered a priori given. These coefficients denote the proportions in which a flow of people is divided when moving to other rooms from the current one. We propose an identification algorithm based on interval estimates of both forward and backward reachability sets. The algorithm is illustrated with a numerical example.
Keywords
моделирование потоков людей линейное программирование множество достижимости идентификация параметров интервальные оценки
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
79

References

  1. 1. Helbing D., Farcas I., Vicsek T. Simulating dynamical features of escape panic // Nature. 2000. V. 407. P. 487–490.
  2. 2. Moussad M., Helbing D., Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters // PNAS. 2011. V. 108. № 17. P. 6884–6888.
  3. 3. Акопов А.С., Бекларян Л.А. Агентная модель поведения толпы при чрезвычайных ситуациях // Автомат. и телемехан. 2015. Вып. 10. C. 131–143.
  4. 4. Зайцева М.В., Точилин П.А. Управление потоками людей в здании во время эвакуации // Вестн. Московского ун-та. Сер. 15. Вычисл. матем. и кибернетика. 2020. № 4. C. 3–17.
  5. 5. Helbing D., Johansson A., Al-Abideen H.Z. Dynamics of crowd disasters: An empirical study // Phys. Rev. E. 2007. V. 75. № 4. P. 046109.
  6. 6. Daganzo C.F. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory // Transp. Res. B. 1994. V. 28B. № 4. P. 269–287.
  7. 7. Daganzo C.F. The cell transmission model, part II: network traffic // Transp. Res. B. 1995. V. 29B. № 2. P. 79–93.
  8. 8. Куржанский А.Б., Куржанский А.А., Варайя П. Роль макромоделирования в активном управлении транспортной сетью // Тр. МФТИ. 2010. Т. 2. № 4. С. 100–118.
  9. 9. Yuan T., Alasiri F., Zhang Y., Ioannou P.A. Evaluation of integrated variable speed limit and lane change control for highway traffic flow // IFAC-PapersOnLine. 2021. V. 54. № 2. P. 107–113.
  10. 10. Cicic M., Johansson K.H. Traffic regulation via individually controlled automated vehicles: a cell transmission model approach // 21-st Intern. Conf. on Intelligent Transp. Systems (ITSC). 2018.
  11. 11. Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes. Berlin: Birkhauser, 2014.
  12. 12. Зайцева М.В., Точилин П.А. Методы построения оценок множеств достижимости в задаче моделирования потоков людей // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 8. С. 1381–1394.
  13. 13. Корнушенко Е.К. Интервальные покоординатные оценки для множества достижимых состояний линейной стационарной системы // Автомат. и телемехан. 1980. Вып. 5. C. 12–22.
  14. 14. Tang W., Wang Z., Wang Y., Raissi T., Shen Y. Interval estimation methods for discrete-time linear time-invariant systems // IEEE Trans. Automat. Control. 2019. V. 64. № 11. P. 4717–4724.
  15. 15. Hanseler F.S., Bierlaire M., Farooq B., Muhlematter T. A macroscopic loading model for time-varying pedestrian flows in public walking areas // Transp. Res. B. 2014. V. 69. P. 60–80.
  16. 16. Guo R.-Y. Potential-based dynamic pedestrian flow assignment // Transp. Res. C. 2018. V. 91. P. 263–275.
  17. 17. Shang H., Sun S., Huang H., Wu W. An extended dynamic model for pedestrian traffic considering individual preference // Simulation Modelling Practice and Theory. 2021. V. 106. P. 102204.
  18. 18. Piccoli B., Garavello M. Traffic flow on networks. American institute of mathematical sciences. Springfield, 2006.
  19. 19. Курант Р., Фридрихс К., Леви Г. О разностных уравнениях математической физики // Успехи матем. наук. 1941. № 8. С. 125–160.
  20. 20. Lighthill M.J., Whitham G.B. On kinematic waves. II. A theory of traffic flow on long crowded roads // Proc. of the Royal Society of London A: Mathematical and Physical Sciences. 1955. V. 229. № 1178. P. 317–345.
  21. 21. Richards P.I. Shock waves on the highway // Operations Research. 1956. V. 4. № 1. P. 42–51.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library