RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

DYNAMIC SELF-ORGANIZATION IN NEURAL NETWORKS SYSTEMS

PII
S3034533S0044466925040124-1
DOI
10.7868/S303453325040124
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 4
Pages
574-589
Abstract
The introduced concept of dynamic self-organization consists in the following. Suppose that there is a set of free (non-interacting) neurons, each of which is at rest or not capable of vibrational electrical activity at all. Then, being connected in a certain way in a network, these neurons can begin to generate electrical impulses. The feasibility of this phenomenon is illustrated by the example of one mathematical model, which is a certain nonlinear boundary value problem of hyperbolic type. A combination of analytical and numerical methods is used to study the attractors of the boundary value problem under consideration.
Keywords
динамическая самоорганизация нейронная сеть квазинормальная форма инвариантный тор асимптотика устойчивость буферность
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
82

References

  1. 1. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. V. 117. P. 500–544.
  2. 2. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophys. J. 1961. V. 1. P. 445–466.
  3. 3. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. IRE. 1962. V. 50. P. 2061–2070.
  4. 4. Колесов А.Ю., Розов Н.Х. Инвариантные торы нелинейных волновых уравнений. М.: Физматлит, 2004.
  5. 5. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974.
  6. 6. Колесов А.Ю., Розов Н.Х. Явление буферности и хаос в кольцевых цепочках однонаправленно связанных генераторов // Докл. АН. 2014. Т. 457. № 3. С. 278–281.
  7. 7. Frederickson P., Kaplan J., Yorke J. The Lyapunov dimension of strange attractors // J. Different. Equat. 1983. V. 49. № 2. P. 185–207.
  8. 8. Глызин С.Д., Колесов А.Ю., Розов Н.Х. Конечномерные модели диффузионного хаоса // Ж. вычисл. матем. и матем. физ. 2010. Т. 50. № 5. С. 860–875.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library