- PII
- S3034533S0044466925040124-1
- DOI
- 10.7868/S303453325040124
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 65 / Issue number 4
- Pages
- 574-589
- Abstract
- The introduced concept of dynamic self-organization consists in the following. Suppose that there is a set of free (non-interacting) neurons, each of which is at rest or not capable of vibrational electrical activity at all. Then, being connected in a certain way in a network, these neurons can begin to generate electrical impulses. The feasibility of this phenomenon is illustrated by the example of one mathematical model, which is a certain nonlinear boundary value problem of hyperbolic type. A combination of analytical and numerical methods is used to study the attractors of the boundary value problem under consideration.
- Keywords
- динамическая самоорганизация нейронная сеть квазинормальная форма инвариантный тор асимптотика устойчивость буферность
- Date of publication
- 01.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 82
References
- 1. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve // J. Physiol. 1952. V. 117. P. 500–544.
- 2. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane // Biophys. J. 1961. V. 1. P. 445–466.
- 3. Nagumo J., Arimoto S., Yoshizawa S. An active pulse transmission line simulating nerve axon // Proc. IRE. 1962. V. 50. P. 2061–2070.
- 4. Колесов А.Ю., Розов Н.Х. Инвариантные торы нелинейных волновых уравнений. М.: Физматлит, 2004.
- 5. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974.
- 6. Колесов А.Ю., Розов Н.Х. Явление буферности и хаос в кольцевых цепочках однонаправленно связанных генераторов // Докл. АН. 2014. Т. 457. № 3. С. 278–281.
- 7. Frederickson P., Kaplan J., Yorke J. The Lyapunov dimension of strange attractors // J. Different. Equat. 1983. V. 49. № 2. P. 185–207.
- 8. Глызин С.Д., Колесов А.Ю., Розов Н.Х. Конечномерные модели диффузионного хаоса // Ж. вычисл. матем. и матем. физ. 2010. Т. 50. № 5. С. 860–875.