RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

APPROXIMATION OF TABULATED FUNCTIONS: A MULTI-CRITERIA APPROACH. PART II

PII
S3034533S0044466925040022-1
DOI
10.7868/S303453325040022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 4
Pages
426-433
Abstract
The article continues the development of a new approach to evaluate approximation parameters, in which the distance of the approximating function from the given finite set of points is estimated by a vector criterion, its components are the modules of residuals at all points. The vector criterion is used to define the distance preference ratio, and the best approximation function is considered to be nondominant with respect to this ratio. Compared to the first article of the authors (“Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki”, 2022), which is devoted to parametric methods, the present article offers nonparametric methods for several preference relations, including the Pareto relation and the relation generated by the information about the equality of criteria. Computational problems are considered and the relations between the introduced approximating functions and classical ones are investigated. Calculated examples are provided.
Keywords
аппроксимация функций непараметрическая аппроксимация многокритериальный анализ теория важности критериев
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
73

References

  1. 1. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения. М.: Наука, 1967.
  2. 2. Нелюбин А.П., Подиновский В.В. Аппроксимация таблично заданных функций: многокритериальный подход // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 5. С. 717–730.
  3. 3. Анатольев С. Непараметрическая регрессия // Квантиль. 2009. № 7. С. 37–52.
  4. 4. NIST/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook
  5. 5. Малов С.В. Регрессионный анализ: теоретические основы и практические рекомендации. СПб.: Изд-во Санкт-Петербургского ун-та, 2013.
  6. 6. Подиновский В.В., Подиновская О.В. Новые многокритериальные решающие правила в теории важности критериев // Докл. АН. 2013. Т. 451. № 1. С. 21–23.
  7. 7. Fishburn P.C. Decision and Value Theory. New York: Wiley, 1964.
  8. 8. Podinovski V.V. On the use of importance information in MCDA problems with criteria measured on the first ordered metric scale // J. Multi-Criteria Decision Analys. 2009. V. 15. P. 163–174.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library