RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

LOCALIZATION OF MOVABLE SINGULARITIES OF THE BLASIUS EQUATION

PII
S3034533S0044466925100037-1
DOI
10.7868/S303453325100037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 10
Pages
1649-1661
Abstract
We study movable singularities of the Blasius equation in the complex plane. Numerical algorithms of their localization are given that allow to find singularities with high accuracy. All these singularities are equivalent and may be represented by one of them. We obtain an asymptotic expansion in the neighborhood of the singularity in explicit form and compute its coefficients. This power-logarithmic expansion is shown to be convergent and giving a local parametrization of the Riemann surface of the Blasius function.
Keywords
функция Блазиуса риманова поверхность решения подвижные особенности высокоточные вычисления
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
4

References

  1. 1. Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung // Z. Math. Phys. V. 56. P. 1—37 (1908); reprint: The boundary layers in fluids with little friction // National Advisory Committee for Aeronautics, Tech. Memo. 1256. (Washington 1950).
  2. 2. Töpfer C. Bemerkungen zu dem Aufsatz von H. Blasius "Grenzschichten in Flüssigkeiten mit kleiner Reibung" // Z. Math. Phys. 1912. V. 60. P. 397—398.
  3. 3. Weyl H. Concerning the differential equations of some boundary-layer problems // Proc. Nat. Acad. Sci. 1941. V. 27. P. 578–583.
  4. 4. Boyd J.P. The Blasius function in the complex plane // Experiment. Math. 1999. V. 8. P. 381–394.
  5. 5. Boyd J.P. Pade approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain // Computers and Physics. 1997. V. 11(3). P. 299–303.
  6. 6. Boyd J.P. The Blasius Function: Computations Before Computers, the Value of Tricks, Undergraduate Projects, and Open Research Problems // SIAM REVIEW. 2008. V. 50. No. 4. P. 791–804.
  7. 7. Varin V.P. Flat Expansions and Their Applications // Comp. Math. and Math. Phys. 2015. V. 55. № 5. P. 797–810.
  8. 8. Ganapol B.D. Highly accurate solutions of the Blasius and Falkner-Skan boundary layer equations via convergence acceleration // [arXiv:1006.3888], 2010. (https://arxiv.org/abs/1006.3888)
  9. 9. Varin V.P. A solution of the Blasius problem // Comp. Math. and Math. Phys. 2014. V. 54. № 6. P. 1025–1036.
  10. 10. Varin V.P. Asymptotic Expansion of Crocco Solution and the Blasius Constant // Comp. Math. and Math. Phys. 2018. V. 58. № 4. P. 517–528.
  11. 11. Crocco L. Sull strato limite laminare nei gas lungo una lamina plana // Rend. Math. Appl. 1941. Ser. 5. V. 21. P. 138–152.
  12. 12. Varin V.P. Integration of Ordinary Differential Equations on Riemann Surfaces with Unbounded Precision // Comp. Math. and Math. Phys. 2019. V. 59. № 7. P. 1105–1120.
  13. 13. Hille E. Ordinary Differential Equations in the Complex Domain. New-York: John Wiley & Sons, 1976.
  14. 14. Hille E. Analytic functions theory. Vol. 1. N.Y.: Chelsea, 1959.
  15. 15. Varin V.P. On Interpolation of Some Recurrent Sequences // Comp. Math. and Math. Phys. 2021. V. 61. № 6. P. 901–913.
  16. 16. Varin V.P. Sequence Transformations in Proofs of Irrationality of Some Fundamental Constants // Comp. Math. and Math. Phys. 2022. V. 62. № 10. P. 1559–1585.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library