- PII
- S3034533S0044466925100012-1
- DOI
- 10.7868/S303453325100012
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 65 / Issue number 10
- Pages
- 1608-1624
- Abstract
- In this paper, a model of the evolution of the Lorenz curve, describing the distribution of income between economic agents, is proposed. It is proved that the evolution of income distribution is consistent with Lorenz majorization in the Ramsey—Bewley model. A Pigou—Dalton transfer (tax and subsidy) system, which generates a stationary income distribution chosen by the welfare state, is constructed. Numerical calculations allow us to formulate a conjecture about the stability of the Lorenz curve corresponding to the selected income distribution.
- Keywords
- мажоризация по Лоренцу передача Пигу–Дальтона модель Рамсея–Бьюли распределение доходов численное моделирование
- Date of publication
- 11.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 12
References
- 1. Bourguignon F., Scott-Railton T. The Globalization of Inequality. Princeton and Oxford: Princeton University Press, 2015.
- 2. Aghion P., Williamson J. G. Growth, Inequality and Globalization: Theory, History and Policy. Cambridge: Cambridge University Press, 1999.
- 3. Atkinson A. B. Inequality: What Can Be Done? Cambridge: Harvard University Press, 2015.
- 4. Piketty T., Goldhammer A. Capital in the Twenty-First Century. Cambridge: The Belknap Press of Harvard University Press, 2014.
- 5. Piketty T., Goldhammer A. Capital and Ideology. Cambridge: The Belknap Press of Harvard University Press, 2020.
- 6. Ramsey F. P. A Mathematical Theory of Saving // Econ. J. 1928. V. 38. № 152. P. 543–559.
- 7. Bewley T. F. An integration of equilibrium theory and turnpike theory // J. Math. Econ. 1982. V. 10. P. 233–267.
- 8. Espino E. On Ramsey’s conjecture: efficient allocations in the neoclassical growth model with private information // J. Econ. Theory. 2005. V. 121. № 2. P. 192–213.
- 9. Becker R. A. Equilibrium Dynamics with Many Agents. In: Dana R.-A., Le Van C., Mitra T., Nishimura K. Handbook on Optimal Growth 1: Discrete Time. Berlin: Springer, 2006. P. 385–442.
- 10. Bosi S., Seegmuller T. On the Ramsey equilibrium with heterogeneous consumers and endogenous labor supply // J. Math. Econ. 2010. V. 46. № 4. P. 475–492.
- 11. Mitra T., Sorger G. On Ramsey’s conjecture // J. Econ. Theory. 2013. V. 148. № 5. P. 1953–1976.
- 12. Борисов К. Ю., Пахиш М. А. Модели экономического роста с неоднородным дисконтированием // Ж. вычисли. матем. и матем. физ. 2023. Т. 63. № 3. С. 355–379.
- 13. Lorenz M. O. Methods of measuring concentration of wealth // Publ. Am. Stat. Assoc. 1905. V. 9. № 70. P. 209–219.
- 14. Marshall A. W., Olkin I., Arnold B. C. Inequalities: Theory of Majorization and Its Applications. Second Edition. New York: Springer, 2011.
- 15. Парастаев Г. С., Шананин А. А. Гипотеза Рамсея о социальной стратификации как принцип отбора по Фишеру // Ж. вычисли. матем. и матем. физ. 2024. Т. 64. № 12. С. 2420–2448.
- 16. Duesenberry J. S. Income, Saving and the Theory of Consumer Behavior. Cambridge: Harvard University Press, 1949.
- 17. Асеев С. М., Бесов К. О., Кряжимский А. В. Задачи оптимального управления на бесконечном интервале времени в экономике // Успехи матем. наук. 2012. Т. 67. Вып. 2 (404). С. 3–64.
- 18. Hartman P. Ordinary differential equations. Second Edition. Philadelphia: Society of Industrial and Applied Mathematics, 2002.
- 19. Alvaredo F., Atkinson A. B., Piketty T., Saez E. World inequality database [Электронный ресурс] / WID.world, 2024. http://wid.world/data (дата обращения: 07.07.2025)