RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

PRINCIPLES OF DUALISM IN THE THEORY OF SOLUTIONS OF INFINITE-DIMENSIONAL DIFFERENTIAL EQUATIONS DEPENDING ON EXISTING TYPES OF SYMMETRIES

PII
S3034533S0044466925090028-1
DOI
10.7868/S303453325090028
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 9
Pages
1479-1504
Abstract
In the presented paper, in the case of a homogeneous medium, the dualism of spaces of soliton solutions and solutions of an induced point-type functional differential equation is described, and existence and uniqueness theorems for such dual solutions are formulated. Such dualism refers to a number of dualisms of various mathematical objects and, in particular, such as a topological linear space and its conjugate space. In the case of an inhomogeneous medium, a different type of dualism is described for spaces of quasi-soliton solutions and solutions of an induced one-parameter family of a point-type functional differential equation, and existence and uniqueness theorems for such dual solutions are formulated. The entire family of soliton (in the case of a homogeneous medium) and quasi-soliton (in the case of an inhomogeneous medium) solutions is constructed for the finite-difference analog of the wave equation with a nonlinear potential.
Keywords
бесконечномерное обыкновенное дифференциальное уравнение солитонный букет солитонные решения функционально-дифференциальное уравнение точечного типа дуализм пространств решений
Date of publication
01.09.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Френкель Я.И., Конторова Т.А. О теории пластической деформации и двойственности // Ж. экспер. и теор. физ. 1938. № 8. С. 89–97.
  2. 2. Пустыльников Л.Д. Бесконечномерные нелинейные обыкновенные дифференциальные уравнения и теория КАМ // Успехи матем. наук. 1997. Т. 52. № 3. С. 551–604.
  3. 3. Тода М. Теория нелинейных решеток. М.: Мир, 1984. С. 262.
  4. 4. Мива Т., Джимбо М., Датэ Э. Солитоны: дифференциальные уравнения, симметрии и бесконечные алгебры. М.: Изд-во МЦНМО, 2005. С. 111.
  5. 5. Бекларян Л.А. Введение в теорию функционально-дифференциональных уравнений. Групповой подход. М.: Факториал Пресс, 2007. С. 286.
  6. 6. Бекларян Л.А, Бекларян А.Л. Дуализм в теории солитонных решений I // Ж. вычисл. матем. и матем. физ. 2024. Т. 64. № 7. С. 1196–1216.
  7. 7. Бекларян Л.А. Дуализм в теории солитонных решений II // Ж. вычисл. матем. и матем. физ. 2024. Т. 64. № 11. С. 2077–2100.
  8. 8. Бекларян Л.А. О квазибегущих волнах // Матем. сборник. 2010. Т. 201. № 12. С. 21–68.
  9. 9. Бекларян Л.А. Новый подход в вопросе существования периодических решений для функционально-дифференциальных уравнений точечного типа // Известия Академии Наук, сер.матем. 2018. Т. 82. № 6. С. 3–35.
  10. 10. Бекларян, Л.А. Новый подход в вопросе существования ограниченных решений для функционально-дифференциальных уравнений точечного типа // Известия Академии Наук, сер.матем. 2020. Т. 84. № 2. С. 3–42.
  11. 11. Beklaryan A.L. Numerical Methods for Constructing Solutions of Functional Differential Equations of Pointwise Type // Advances in Systems Science and Applications. 2020. Vol. 20. No. 2. P. 56–70.
  12. 12. Бекларян Л.А., Бекларян А.Л. Функционально-дифференциальные уравнения точечного типа. Бифуркация // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 8. С. 1291–1303.
  13. 13. Бекларян Л.А., Бекларян А.Л. Вопрос существования ограниченных солитонных решений в задаче о продольных колебаниях упругого бесконечного стержня в поле с сильно нелинейным потенциалом // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 12. С. 2024–2039.
  14. 14. Бекларян Л.А., Бекларян А.Л. Вопрос существования ограниченных солитонных решений в задаче о продольных колебаниях упругого бесконечного стержня в поле с нелинейным потенциалом общего вида // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 6. С. 933–950.
  15. 15. Beklaryan L.A., Beklaryan A.L., Akopov A.S. Soliton Solutions for the Manhattan Lattice // International Journal of Applied Mathematics. Vol. 36. № 4. С. 2023–2041.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library