ОМНЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

О сохранении сферической симметрии на сферической сетке в декартовой системе координат при расчете газодинамических течений эйлеровыми конечно-объемными схемами

Код статьи
S3034533S0044466925080063-1
DOI
10.7868/S303453325080063
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 65 / Номер выпуска 8
Страницы
1387-1396
Аннотация
В работе определяются достаточные условия, чтобы конечно-объемные эйлеровы схемы для расчета газодинамических течений в декартовой системе координат, использующие метод Гаусса для операторов дивергенции и градиента и метод средней точки для аппроксимации интегралов по граням ячеек, обладали свойством сохранять сферическую симметрию на сферической сетке. Предлагаются два подхода к обеспечению геометрического условия на отношение площадей угловых граней к объему ячейки: коррекция площадей и специальный выбор разбиения по полярному углу. В качестве примера сохранения симметрии при выполнении достаточных условий рассматривается расчет сферической задачи о распаде разрыва по эйлеровой схеме годуновского типа. Библ. 15. Фиг. 6. Табл. 1.
Ключевые слова
газовая динамика конечно-объемные эйлеровы схемы сохранение сферической симметрии декартова система координат сферическая сетка
Дата публикации
22.05.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
13

Библиография

  1. 1. Ye Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. Part II // Physics Reports. 2017. V. 720–722. P. 1–136.
  2. 2. Caramana E.G., Walen P.P. Numerical preservation of symmetry properties of continuum problems // J. Comput. Phys. 1998. V. 141. P. 174–198.
  3. 3. Margolin L., Shashkov M. Using a curvilinear grid to construct symmetry-preserving discretizations for Lagrangian gas dynamics // J. Comput. Phys. 1999. V. 149. P. 389–417.
  4. 4. Caramana E.G., Rousculp C.L., Burton D.E. A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three-dimansional Cartisian geometry // J. Comput. Phys. 2000. V. 157. P. 89–119.
  5. 5. Ling D., Cheng J., Shu C.-W. Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates // Computer and Fluids. 2017. V. 157. P. 112–130.
  6. 6. Kenamond M., Bement M., Shashkov M. Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz-cylindrical coordinates // J. Comput. Phys. 2014. V. 268. P. 154–185.
  7. 7. Guo S., Zhang M., Zhou H., Xiong J., Zhang S. A symmetry preserving scheme for three-dimensional LAgrangian radiation hydrodynamic simulations of ICF capsule implosion // Computer and Fluids. 2019. V. 195. 104317.
  8. 8. Getings M., Weaver R., Clover M., Betlach T., Byrne N., Coker R., Dendy E., Hueckstaedt R., New K., Oakes W.R., Ranta D., Stefan R. The RAGE radiation-hydrodynamic code // Computational Science and Discovery. 2008. 1 (1).
  9. 9. Fryxell B., Olson K., Ricker P., Timmes F.X., Zingale M., Lamb D.Q., MacNeice P., Rosner R., Truran J.W., Tufo H. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes // Astrophysical Journal Supplement. 2000. V. 131. P. 273–334.
  10. 10. Лебо И.Г., Тишкин В.Ф. Исследование гидродинамических неустойчивостей в задачах лазерного термоядерного синтеза методами математического моделирования. М.: ФИЗМАТЛИТ, 2006, 304 c.
  11. 11. Глазырин И.В., Михайлов Н.А. Конечно-объемная схема для многокомпонентных сжимаемых течений на неструктурированной сетке в трехмерной программе Фокус // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. №6. С. 1019–1033.
  12. 12. Toro E.F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Berlin: Springer, 2009. 3rd ed. 721 p.
  13. 13. Darwish M.S., Moukalled F. TVD schemes for unstructured grids // Int. J. of Heat and Mass Transfer. 2003. V. 46. P. 599–611.
  14. 14. Матяш C.В. Новый метод использования принципа минимальных приращений в численных схемах второго порядка аппроксимации // Уч. зап. ЦАГИ. 2005. Т. 36. №3–4. С. 42–51.
  15. 15. Куропатенко В.Ф., Коваленко Г.В., Кузнецова В.И., Михайлова Г.И., Сапожникова Г.Н. Комплекс программ «Волна» и неоднородный разностный метод для расчета неустановившихся движений сжимаемых сплошных сред. Часть 1. Неоднородный разностный метод // ВАНТ. Сер. Матем. моделирование физ. процессов. 1989. В. 2. С. 9–25.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека