RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

RATIONAL COEFFICIENTS OF ORTHOGONAL DECOMPOSITIONS OF CERTAIN FUNCTIONS

PII
S3034533S0044466925070105-1
DOI
10.7868/S303453325070105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 7
Pages
1211-1224
Abstract
Decompositions of many elementary and special functions into series by orthogonal polynomials have coefficients known explicitly. However, these coefficients are almost always irrational. Therefore, any numerical method gives these coefficients approximately when calculating in any arithmetic. This also applies to spectral methods that provide efficient approximations of holonomic functions. However, in some exceptional cases, the expansion coefficients obtained by the spectral method turn out to be rational and are calculated exactly in rational arithmetic. We consider such decompositions with respect to some classical orthogonal polynomials. It is shown that in this way it is possible to obtain an infinite set of linear forms for some irrationalities, in particular, for Euler’s constant.
Keywords
ортогональные полиномы спектральные методы головомные последовательности
Date of publication
23.04.2025
Year of publication
2025
Number of purchasers
0
Views
11

References

  1. 1. Pashkovskii S. Computational Application of Chebyshev Polynomials and Series (Nauka, Moscow, 1983) [in Russian].
  2. 2. Варин В.П. Аптроксимация дифференциальных операторов с учетом граничных условий // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 8. С. 1251–1271.
  3. 3. Варин В.П. Spectral methods for solution of differential and functional equations // Comp. Math. and Math. Phys. 2024. V. 64. № 5. P. 888–904.
  4. 4. Арнёклеч А.І. On linear forms containing the Euler constant // [arXiv:0902.1768v2] (2009). (http://arxiv.org/abs/0902.1768v2).
  5. 5. Арнёклеч А.І., Тиуакюч D.N. Four-termed recurrence relations for γ-forms // Sovrem. Probl. Math. 2007. Iss. 9. P. 37–43.
  6. 6. Belabas K., Cohen H. Numerical Algorithms for Number Theory. Mathematical Surveys and Monographs, V. 254. Amer. Math. Soc. (2021).
  7. 7. Варин В.П. Преобразование последовательностей в доказательствах иррациональности некоторых фундаментальных констант // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 10. С. 1587–1614.
  8. 8. Huang H., Kauers M. D-finite numbers // Inter. J. Number Theor. 2016. (https://www.researchgate.net/publication/310595024).
  9. 9. Tchebichef P.I. Sur le développement des fonctions a une seule variable // Bull. de l’Acad. Imperiale des Sci. de St. Petersbourg. 1859. V. 1. P. 193–200.
  10. 10. Gantmacher F.R. Application of the Theory of Matrices (Chelsea Press, New-York, 1960).
  11. 11. Gradsheyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products (7th ed. Acad. Press, Elsevier, 2007).
  12. 12. Варин В.П. Функциональное суммирование рядов // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 1. С. 3–17.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library