ОМНЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

УЕДИНЕННЫЕ ВОЛНЫ УРАВНЕНИЙ ИЕРАРХИИ БЮРГЕРСА

Код статьи
S3034533S0044466925050048-1
DOI
10.7868/S303453325050048
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 65 / Номер выпуска 5
Страницы
654-664
Аннотация
Рассматриваются уравнения иерархии Бюргерса. Показано, что хорошо известное преобразование Коула–Хопфа для линеаризации классического уравнения Бюргерса обобщается на случай уравнений произвольного порядка иерархии Бюргерса. Этот факт позволяет найти уединенные и периодические волны, описываемые уравнениями иерархии Бюргерса, напоминающие N-волну для классического уравнения Бюргерса. Детальное рассмотрение построения уединенных волн представлено для уравнения третьего порядка Шарма–Тассо–Олвера и для уравнения четвертого порядка иерархии. Установлено, что для дисперсионного уравнения третьего порядка уединенные волны типа N-волны имеют осцилляции на фронте решения. В случае диссипативных уравнений второго и четвертого порядка такие осцилляции отсутствуют. Библ. 39. Фиг. 5.
Ключевые слова
уравнение Бюргерса уравнение Шарма–Тассо–Олвера преобразование Коула–Хопфа иерархия Бюргерса уединенная волна
Дата публикации
25.02.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
16

Библиография

  1. 1. Ablowitz M.J., Clarkson P.A. Solitons Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991.
  2. 2. Drazin P.G., Johnson R.S. Solitons: An Introduction. Cambridge: Cambridge University Press, 1989.
  3. 3. Агравал Г. Нелинейная волоконная оптика. М.: Мир, 1996.
  4. 4. Кившарь Ю.С., Агравал Г. Оптические солитоны. От волоконных световодов к фотонным кристаллам. М.: Физматлит, 2005.
  5. 5. Кудряшов Н.А. Методы нелинейной математической физики. Долгопрудный: Интеллект, 2019.
  6. 6. Polyanin A.D., Zaitsev V.F. Handbook of Nonlinear Partial Differential Equations, 2nd ed. Boca Raton: CRC Press, 2012.
  7. 7. Weiss J., Tabor M., Carnevale G. The Painleve property for partial differential equations // J. Math. Phys. 1982. V. 24. №3. P. 522–526.
  8. 8. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg-deVries equation // Physical Review Letters. 1967. V. 19.№19. P. 1095–1097.
  9. 9. Lax P.D. Integrals of nonlinear equations of evolution and solitary waves // Communications on Pure and Applied Mathematics. 1968. V. 21.№5. P. 467–490.
  10. 10. Kaup D.J., Newell A.C. An exact solution for a derivative Schr¨odinger equation // J. of Math. Physics. 1979. 19. 798.
  11. 11. Куликовский А.Г., Чугайнова А.П., Шаргатов В.А. Единственность автомодельных решений задачи о распаде произвольного разрыва уравнения Хопфа со сложной нелинейностью // Ж. вычисл. матем. и матем. физ. 2016. V. 56.№7. P. 1363–1370.
  12. 12. Куликовский А.Г., Чугайнова А.П. Исследование разрывов в решениях уравнений упругопластической среды Прандтля-Рейсса // Ж. вычисл. матем. и матем. физ. 2016. V. 56.№4. P. 650–66.
  13. 13. Куликовский А.Г., Ильичев А.Т., Чугайнова А.П., Шаргатов В.А. О спонтанно излучающих ударных волнах. Докл. АН. 2019. 487.№1. С. 28–31.
  14. 14. Chugainova A.P., Kulikovskii A.G. Shock waves in an incompressible anisotropic elastoplastic medium with hardening and their structures // Appl. Math. and Comput. 2021.№401. 126077.
  15. 15. Bateman, H. Some Recent Researches on the Motion of Fluids. MonthlyWeather Review. 1915.№43. P. 163–170. http://dx.doi.org/10.1175/1520-0493 (1915)432.0.CO;2.
  16. 16. Burgers J.M. A mathematical model illustrating the theory turbulence // Adv. Appl. Mech. 1948.№1. P. 171–199.
  17. 17. Whitham G.B. Linear and nonlinear waves, A Wiley-interscience Publication? New York: J. Wiley and Sons, 1974.
  18. 18. Billingham J., King A.C.. Wave Motion. Cambridge University press. 2000.№468.
  19. 19. Cole J.D. On a quasi-linear parabolic equation occuring in aerodynamics // Quart. Appl. Math. 1951. V. 9. № 3. P. 225–236.
  20. 20. Hopf E. The partial differential equation ut + uux = uxx // Commun. Pure Appl. Math. 1950. V. 3.№3. P. 201–230.
  21. 21. Sharma AS, Tasso H. Connection Between Wave Envelope and Explicit Solution of a Nonlinear Dispersive Wave Equation. Muenchen, Germany: Max-Planck-Institut f ¨ur Plasmaphysik. 1976.
  22. 22. Olver J.P. Evolution equations posessing infinitely many symmetries // J. Math. Phys. 1977. V. 18.№6. P. 1212–1215.
  23. 23. Johnpillai, Andrew Gratien and Khalique, Chaudry Masood. On the solutions and conservation laws for the SharmaTasso-Olver equation. ScienceAsia. 2014. V. 40.№6. P. 451–455. https://doi.org/10.2306/scienceasia1513-1874.2014.40.451.
  24. 24. Khan, Mohammad Jibran and Nawaz, Rashid and Farid, Samreen and Iqbal, Javed. New iterative method for the solution of fractional damped burger and fractional sharma-tasso-olver equations. Complexity. 2018. https://doi.org/10.1155/2018/3249720.
  25. 25. Ren, Bo and Ma, Wen-Xiu. Rational solutions of a (2+1)-dimensional Sharma-Tasso-Olver equation // Chinese Journal of Physics. 2019.№60. P. 153–157. https://doi.org/10.1016/j.cjph.2019.05.004.
  26. 26. Roy, Ripan and Akbar, M. Ali and Wazwaz, Abdul Majid. Exact wave solutions for the nonlinear time fractional Sharma–Tasso–Olver equation and the fractional Klein–Gordon equation in mathematical physics // Optical and Quantum Electronics. 2018. V. 50.№1. https://doi.org/10.1007/s11082-017-1296-9.
  27. 27. Zhou, Tian-Yu and Tian, Bo and Chen, Yu-Qi. Elastic Two-Kink, Breather, Multiple Periodic, Hybrid and Half/Local-Periodic Kink Solutions of a Sharma-Tasso-Olver-Burgers Equation for the Nonlinear Dispersive Waves // Qualitative Theory of Dynamical Systems 2023. V. 22.№1. https://doi.org/10.1007/s12346-022-00713-8.
  28. 28. Zayed, Elsayed M.E. and Amer, Yasser A. and Shohib, Reham M.A.. The fractional expansion method and its applications for solving four nonlinear space-time fractional PDES in mathematical physics // Italian Journal of Pure and Applied Mathematics. 2015.№34. P. 463–482.
  29. 29. Chen, Cheng and Jiang, Yao-Lin. Simplest equation method for some time-fractional partial differential equations with conformable derivative // Computers and Mathematics with Applications. 2018. V. 75.№8. P. 2978–2988. https://doi.org/10.1016/j.camwa.2018.01.025.
  30. 30. Miao, Zhengwu and Hu, Xiaorui and Chen, Yong. Interaction phenomenon to (1+1)-dimensional Sharma–Tasso–Olver–Burgers equation // Applied Mathematics Letters. 2021.№112. https://doi.org/10.1016/j.aml.2020.106722.
  31. 31. Kumar, Sachin and Khan, Ilyas and Rani, Setu and Ghanbari, Behzad. Lie Symmetry Analysis and Dynamics of Exact Solutions of the (2+1)-Dimensional Nonlinear Sharma-Tasso-Olver Equation // Mathematical Problems in Engineering. 2021. https://doi.org/10.1155/2021/9961764.
  32. 32. Wang, Kang-Jia and Shi, Feng and Liu, Jing-Hua. A Fractal Modification Of The Sharma-TassoOlver Equation and Its Fractal Generalized Variational Principle. Fractals. 2022. V. 30. № 6. https://doi.org/10.1142/S0218348X22501213.
  33. 33. Yassin, Ola and Alquran, Marwan. Constructing new solutions for some types of two-mode nonlinear equations // Applied Mathematics and Information Sciences. 2018. V. 12. № 2. P. 361–367. https://doi.org/10.18576/amis/120210.
  34. 34. Ghose-Choudhury, A. and Garai, Sudip. Some exact wave solutions of nonlinear partial differential equations by means of comparison with certain standard ordinary differential equations // Mathematical Methods in the Applied Sciences. 2022. V. 45.№16. P. 9297–9307. https://doi.org/10.1002/mma.8305.
  35. 35. Sirisubtawee, Sekson and Koonprasert, Sanoe and Sungnul, Surattana. New exact solutions of the conformable spacetime Sharma-Tasso-Olver equation using two reliable methods // Symmetry. 2020. V. 12.№4. https://doi.org/10.3390/SYM12040644.
  36. 36. Kai, Yue and Yin, Zhixiang. Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation. Physics Letters, Section A: General, Atomic and Solid State Physics. 2022.№452. https://doi.org/10.1016/j.physleta.2022.128430.
  37. 37. Kudryashov, N.A.. Self-similar solutions of the Burgers hierarchy // Applied Mathematics and Computation. 2009. V. 215.№5. P. 1990–1993. https://doi.org/10.1016/j.amc.2009.07.048.
  38. 38. Kudryashov, N.A.. Generalized Hermite polynomials for the Burgers hierarchy and point vortices // Chaos, Solitons and Fractals. 2021.№151. https://doi.org/10.1016/j.chaos.2021.111256.
  39. 39. Kudryashov, N.A. and Sinelshchikov, D.I.. The Cauchy problem for the equation of the Burgers hierarchy // Nonlinear Dynamics. 2014. V. 76.№1. P. 561–569. https://doi.org/10.1007/s11071-013-1149-4.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека