RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

STUDY OF NON-DISSIPATIVE STRUCTURES OF DISCONTINUITIES FOR MICROPOLAR MAGNETOELASTIC MEDIUM EQUATIONS AND DEVELOPMENT OF A GENERAL APPROACH TO NUMERICAL SOLUTION OF EVOLUTIONARY PARTICULAR DIFFERENTIAL EQUATIONS

PII
S3034533S0044466925020055-1
DOI
10.7868/S303453325020055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 2
Pages
180-192
Abstract
Numerical solutions of magnetoelasticity equations are considered. A numerical scheme based on central differences for spatial derivatives and the fourth-order Runge-Kutta method for time derivatives is used. The initial data are solitary wave and smoothed step data (problem of discontinuity decay). The study is carried out from simpler equations to more complex ones. New types of discontinuity structures are identified, and the conditions for the correctness of the equations are investigated.
Keywords
микрополярная среда уединенные волны структуры разрывов конечноразностные методы
Date of publication
01.02.2025
Year of publication
2025
Number of purchasers
0
Views
81

References

  1. 1. Ерофеев В.И., Шеконян А.В., Белубикян М.В. Пространственно-локализованние нелинейные магнитоупругие волны в электропроводящей микрополярной среде // Проблемы прочности и пластичности. 2019. Т. 81. № 4. С. 402–415.
  2. 2. Erofeev V.I., Malkhanov A.O. Spatially localized nonlinear magnetoelastic waves in an electrically conductive micropolar medium // Z. Angerw Math. Mech. 2023. V. 103. I. 4.
  3. 3. Виноградова Ю.В., Ерофеев В.И. Вывод уравнений нелинейной среды Коссера // Вест. Нижегородского университета им. Н.И. Лобачевского. Матем. моделирование и оптимальное управление. 2009. № 6(1). С. 159–162.
  4. 4. Erofeev V.I., Il’ichev A.T. Instability of supersonic solitary waves in a generalized elastic electrically conductive medium // Continuum Mech. Thrermodin. 2023. https:/doi.org/10.1007/s00161-023-01249-1
  5. 5. Бахолдин И. Б. Бездиссипативные разрывы в механике сплошной среды. М.: Физматлит, 2004. 318 с.
  6. 6. Бахолдин И.Б. Уравнения, описывающие волны в трубах с упругими стенками, и численные методы с низкой схемной диссипацией // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 7. С. 1224–1238.
  7. 7. Куликовский А. Г., Свешникова Е. И. Нелинейные волны в упругих средах.М.:Московский лицей. 1998. 412 с.
  8. 8. Куликовский А. Г. Об устойчивости однородных состояний // Прикл. матем. и механ. 1966. Т. 30. Вып. 1. С. 148–153.
  9. 9. Бахолдин И. Б. Анализ уравнений двухжидкостной плазмы в приближении электромагнитной гидродинамики и структур разрывов в их решениях // Ж. вычисл. матем. и матем. физ. 2021. Т. 68. № 3. С. 458–474.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library