ОМНЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

ВОЗМОЖНОСТИ ЗОНДИРОВАНИЙ НА КОНЕЧНОМ НАБОРЕ ЧАСТОТ

Код статьи
S3034533S0044466925020048-1
DOI
10.7868/S303453325020048
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 65 / Номер выпуска 2
Страницы
172-179
Аннотация
Рассмотрена двумерная среда, в которой поля описываются уравнением Гельмгольца. Изучена линеаризованная постановка задачи, которая в итоге сводится к восстановлению неизвестной правой части неоднородного уравнения Гельмгольца в бесконечной полосе. Указанная правая часть в данной работе берется в виде суммы дельта-функций, которые можно интерпретировать как суммарные проводимости тонких слоев. В качестве информации для решения обратной задачи используются значения решения уравнения Гельмгольца и нормальной производной решения на границе полосы для нескольких значений параметра в уравнении Гельмгольца. Эти данные можно интерпретировать как значения напряженностей электрического и магнитного полей на границе полосы для конечного набора частот. С помощью разложения в ряды Фурье получено интегральное уравнение, связывающее искомые величины с данными для решения обратной задачи. При использовании преобразования Фурье установлены условия однозначности решения обратной задачи. Наряду с этим даны примеры многозначности решения обратной задачи в неожиданных ситуациях. Библ. 12.
Ключевые слова
двумерная среда тонкие слои бесконечная полоса обратная задача для уравнения Гельмгольца теоремы единственности примеры неоднозначности решения при восстановлении среды
Дата публикации
01.02.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
83

Библиография

  1. 1. Барашков А.С. О возможности обнаружения тонких проводящих слоев по измерениям полей на поверхности среды // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 12. С. 2127–2138.
  2. 2. Бердичевский М.Н., Дмитриев В.И. Модели и методы магнитотеллурики. М.: Научный мир, 2009.
  3. 3. Романов В.Г. Некоторые обратные задачи для уравнений гиперболического типа. Новосибирск: Наука, 1972.
  4. 4. Владимиров В.С. Обобщенные функции в математической физике. М.: Наука, 1979.
  5. 5. Барашков А. С. Дистанционное определение параметров мощных слоев с использованием промежуточной модели // Матем. моделирование. 2020. Т. 32. № 6. С. 111–126.
  6. 6. Новосёлов К. С. Графен: материалы Флатландии // Успехи физ. наук. 2011. Т. 181. № 12. С. 1299–1311.
  7. 7. Дубровский В. Г. Теоретические основы технологии полупроводниковых наноструктур. Санкт-Петербург, 2019.
  8. 8. Барашков А.С. Асимптотические представления решения обратных задач для уравнения Гельмгольца // Ж. вычисл. матем. и матем. физ. 1988. Т. 28. № 12. С. 1823–1831.
  9. 9. Barashkov A.S. Small Parameter Method in Multidimensional Inverse Problems. VSP, Utrecht, The Netherlands, 1998.
  10. 10. Бохнер С. Лекции об интегралах Фурье. М.: Наука, 1962.
  11. 11. Барашков А.С. Математика. Высшее образование. М.: АСТ, 2011.
  12. 12. Полиа Г., Сеге Г. Задачи и теоремы из анализа. Т. 2. М.: Наука, 1978.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека