RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

SPECTRAL METHODS OF POLYNOMIAL INTERPOLATION AND APPROXIMATION

PII
S3034533S0044466925020027-1
DOI
10.7868/S303453325020027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 2
Pages
150-161
Abstract
The classical problem of interpolation and approximation of functions by polynomials is considered here as a special case of spectral representation of functions. This approach was previously developed by us for the orthogonal Legendre and Chebyshev polynomials. Here, we use fundamental Newton polynomials as basis functions. It is shown that the spectral approach has computational advantages over the divided difference method. In a number of problems, Newton and Hermite interpolations are indistinguishable with our approach and are calculated using the same formulas. Also, the computational algorithms that we proposed earlier using orthogonal polynomials are transferred without changes to Newton and Hermite polynomials.
Keywords
спектральные методы полиномы Ньютона и Эрмита интерполяция и аппроксимация
Date of publication
01.02.2025
Year of publication
2025
Number of purchasers
0
Views
95

References

  1. 1. Davis P.J. Interpolation and Approximation. New-York: Dover. 1975.
  2. 2. Варин В.П. Аппроксимация дифференциальных операторов с учетом граничных условий // Ж. вычисл. матем. и матем. физ. 2023. Т. 63. № 8. С. 1251–1271.
  3. 3. Варин В.П. Спектральные методы решения дифференциальных и функциональных уравнений // Ж. вычисл. матем. и матем. физ. 2024. Т. 64. № 5. С.713–728.
  4. 4. P. M. M. “Interpolation.” By J. F. STEFFENSEN, SC.D., Professor of Actuarial Science at the University of Copenhagen // REVIEWS. P. 325–332. (1927). https://www.cambridge.org/core
  5. 5. Steffensen J.F. Interpolation. Baltimore: The Williams and Wilkins Co. 1927.
  6. 6. Milne-Thomson L.M. The Calculus of Finite Differences. London: Macmillan and Co. 1933.
  7. 7. Wilf H.S. Mathematics for the physical sciences. NewYork: Wiley. 1962.
  8. 8. Opitz G. Steigungsmatrizen // Z. Angew. Math. Mech. 1964. V. 44. T52–T54.
  9. 9. Gantmacher F.R. Application of the Theory of Matrices. New-York: Chelsea Press. 1960.
  10. 10. Markoff A.A. Differenzenrechnung. Leipzig: Teubner. 1896.
  11. 11. Trefethen L.N. Approximation Theory and Approximation Practice. SIAM. 2013.
  12. 12. Варин В.П. Преобразование последовательностей в доказательствах иррациональности некоторых фундаментальных констант // Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 10. С. 1587–1614.
  13. 13. Burden R.L., Faires J.D. Numerical analysis. 9th ed. Boston: Brooks/Cole. 2010.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library