- Код статьи
- S0044466925030105-1
- DOI
- 10.31857/S0044466925030105
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 65 / Номер выпуска 3
- Страницы
- 364-375
- Аннотация
- В работе предложен новый вариант адаптивного алгоритма Франк–Вульфа для относительно гладких выпуклых задач минимизации. Предлагается использовать дивергенцию, отличную от половины квадрата евклидовой нормы в формуле для регулировки длины шага. Доказаны оценки скорости сходимости такого метода для задач минимизации относительно гладких выпуклых функций с “trianglе scaling propеrty”. Также доказана оценка со скоростью геометрической прогрессии при условии относительной сильной выпуклости функции. Выполнены вычислительные эксперименты для обратной задачи Пуассона (Poisson inverse problem) и для метода опорных векторов (SVM). Найдены условия, в которых наблюдается явное преимущество предложенного алгоритма над классическим методом, а также над ускоренными методами градиентного типа с относительной гладкостью и свойством “trianglе scaling propеrty”. Библ. 15. Фиг. 2.
- Ключевые слова
- относительная гладкость алгоритм Франк–Вульфа адаптивные алгоритмы выпуклая оптимизация выпуклая минимизация дивергенция Брегмана
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 28
Библиография
- 1. Bauschke H. H., Bolte J., and Teboulle M. A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications // Mathematics of Operations Research. 2017. V. 42. P. 330–48.
- 2. Lu H., Freund R. M., and Nesterov Y. Relatively smooth convex optimization by first-order methods, and applications // SIAM Journal on Optimization 2018. V. 28. P. 333–54.
- 3. Hendrikx H., Xiao L., Bubeck S., Bach F., and Massoulie L. Statistically preconditioned accelerated gradient method for distributed optimization // In: International conference on machine learning. PMLR. 2020:4203–27.
- 4. Lu H. “Relative continuity” for non-Lipschitz nonsmooth convex optimization using stochastic (or deterministic) mirror descent // INFORMS Journal on Optimization 2019. V. 1. P. 288–303.
- 5. Nesterov Y. Implementable tensor methods in unconstrained convex optimization // Mathematical Programming. 2021. V. 186 P. 157–83.
- 6. Stonyakin F., Titov A., Alkousa M., Savchuk O., and Gasnikov A. Adaptive Algorithms for Relatively Lipschitz Continuous Convex Optimization Problems // Pure and Applied Functional Analysis. 2023. V. 8. P. 1505–26.
- 7. Dragomir R. A., Taylor A. B., d’Aspremont A, and Bolte J. Optimal complexity and certification of Bregman first-order methods // Mathematical Programming 2022:1–43.
- 8. Hanzely F., Richtarik P., and Xiao L. Accelerated Bregman Proximal Gradient Methods for Relatively Smooth Convex Optimization // Comput Optim Appl. 2021. V. 79. P. 405–440.
- 9. Dragomir R. A. Bregman gradient methods for relatively-smooth optimization // PhD thesis. UT1 Capitole, 2021.
- 10. Combettes C. W. and Pokutta S. Complexity of linear minimization and projection on some sets // Operations Research Letters. 2021. V. 49. P. 565–71.
- 11. Bomze I. M., Rinaldi F., and Zeffiro D. Frank–Wolfe and friends: a journey into projection-free first order optimization methods // 4OR-Q J Oper Res. 2021. V. 14. P. 313–345.
- 12. Frank M., Wolfe P., et al. An algorithm for quadratic programming // Naval research logistics quarterly. 1956. V. 3. P. 95–110.
- 13. Aivazian G., Stonyakin F. S., Pasechnyk D., Alkousa M. S., Raigorodsky A., and Baran I. Adaptive variant of the Frank– Wolfe algorithm for convex optimization problems // Programming and Computer Software 2023. V. 49. P. 493–504.
- 14. Polyak B. Introduction to Optimization. 2020.
- 15. Braun G., Carderera A., Combettes C. W., et al. Conditional gradient methods // arXiv preprint arXiv:2211.14103 2022.