RAS MathematicsЖурнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics

  • ISSN (Print) 0044-4669
  • ISSN (Online) 3034-533

THE NEW IS THE WELL-FORGOTTEN OLD — F4 ALGORITHM OPTIMIZATION

PII
S0044466925030082-1
DOI
10.31857/S0044466925030082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 3
Pages
338-346
Abstract
The Grobner basis is a fundamental concept in computational algebra. F4 is one of the fastest algorithms for computing Grobner basis. In this paper, we will discuss the process of writing effective F4. Despite the fact that this work focuses on algorithms from computational algebra, some of the results and ideas presented here may have broader applications beyond this specific subject area. In general, the theory described below can be regarded as an abstraction, as it progresses through the text. This is because the text is not actually about the F4 algorithm itself, but rather about the power of profiling, unconventional techniques, and selecting the appropriate memory model. We will provide examples of inefficient usage of the standard library, recall the fundamental principles of optimization in order to apply them as efficiently as possible to obtain the fastest F4 algorithm, using non-traditional approaches.
Keywords
вычислительная алгебра алгоритм F4 профилирование оптимизации
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Buchberger B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal // Ph. D. Thesis, Math. Inst., University of Innsbruck, 1965.
  2. 2. Faugere J. C. A new efficient algorithm for computing Gro¨bner bases (F4) // J. of pure and applied algebra. 1999. V. 139. № 1–3. P. 61–88.
  3. 3. Boyer B. GBLA: Gro¨bner basis linear algebra package // Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation. 2016. P. 135–142.
  4. 4. Perry J. An extension of Buchberger’s criteria for Gro¨bner basis decision // LMS Journal of Computation and Mathematics. 2010. V. 13. P. 111–129.
  5. 5. Peifer D. The F4 Algorithm. 2017.
  6. 6. Gebauer R., Moller H. M. On an installation of Buchberger’s algorithm // J. of Symbolic computation. 1988. V. 6. № 2–3. P. 275–286.
  7. 7. Hong H., Perry J. Are Buchberger’s criteria necessary for the chain condition? // J. of Symbolic Computation. 2007. V. 42. № 7. P. 717–732.
  8. 8. Hong H., Perry J. Corrigendum to? Are Buchberger? s criteria necessary for the chain condition?? // J. of Symbolic Computation. 2008. V. 43. № 3. P. 233.
  9. 9. Dube T. W. The structure of polynomial ideals and Gro¨bner bases // SIAM Journal on Computing. 1990. V. 19. № 4. P. 750–773.
  10. 10. Mayr E. W., Meyer A. R. The complexity of the word problems for commutative semigroups and polynomial ideals // Advances in mathematics. 1982. V. 46. № 3. P. 305–329.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library