Рассматривается слой жидкости конечной глубины, описываемый уравнениями Эйлера. Ледяной покров моделируется геометрически нелинейной упругой пластиной Кирхгофа–Лява.Траектории частиц жидкости под ледяным покровом находятся в поле нелинейных поверхностных периодических бегущих волн малой, но конечной амплитуды. Решение, описывающее такие поверхностные волны допускается уравнениями модели. Периодические волны описываются эллиптическими функциями Якоби. В анализе используются явные асимптотические выражения для решений, описывающих волновые структуры на границе раздела вода–лед, такие как периодическая волна на фоне нулевого отклонения поверхности, а также асимптотические решения для поля скоростей в толще жидкости, генерируемого этими волнами. Библ. 21. Фиг. 4.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation