Определение подходящего размера выборки имеет решающее значение для построения эффективных моделей машинного обучения. Существующие методы часто либо не имеют строгого теоретического обоснования, либо привязаны к конкретным статистическим гипотезам о параметрах модели. В настоящей работе представляются два новых метода, основанных на значениях правдоподобия на бутстрапированных подвыборках. Демонстрируется корректность одного из этих методов на в модели линейной регрессии. Вычислительные эксперименты как с синтетическими, так и с реальными наборами данных показывают, что предложенные функции сходятся по мере увеличения размера выборки, что подчеркивает практическую полезность подхода. Библ. 13. Фиг. 4. Табл. 1.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation