Изучается трехслойный по времени билинейный метод конечных элементов с весом для начально-краевой задачи для одномерного волнового уравнения. Дается вывод оценок погрешности снизу порядков (h + τ)2λ/3, 0 ⩽ λ ⩽ 3 в нормах L1 и W1,1 h . В них каждая из двух начальных функций или свободный член в уравнении принадлежат пространствам типа Гёльдера соответствующих порядков гладкости. Они обосновывают точность по порядку соответствующих известных оценок погрешности (сверху) метода конечных элементов с весом второго порядка аппроксимации для гиперболических уравнений второго порядка, а также невозможность их улучшения при максимальном ослаблении степени суммируемости в нормах погрешности и максимальном ее усилении в нормах данных. Вывод основан на методе Фурье. Библ. 10.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации