Задачи квадратичной оптимизации в гильбертовом пространстве часто возникают при решении некорректных задач для дифференциальных уравнений. При этом известно целевое значение функционала. Кроме того, структура функционала позволяет вычислять градиент с помощью решения корректных задач, что позволяет применять методы первого порядка. Настоящая статья посвящена построению -моментного метода минимальных ошибок — эффективного метода, минимизирующего расстояние до точного решения. Доказывается сходимость и оптимальность построенного метода, а также невозможность равномерной сходимости методов, работающих в подпространствах Крылова. Проводятся численные эксперименты, демонстрирующие эффективность применения -моментного метода минимальных ошибок к решению различных некорректных задач: начально-краевой задачи для уравнения Гельмгольца, ретроспективной задачи Коши для уравнения теплопроводности, обратной задачи термоакустики. Библ. 8. Фиг. 13. Табл. 4.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation