Исследуется краевая задача типа Стеклова для оператора Ламэ в полуцилиндре, содержащем малую полость. Рассматривается случай, когда упругая, однородная изотропная среда, заполняющая область с малой полостью, жестко сцеплена с боковой границей полуцилиндра и границей малой полости, что соответствует однородному граничному условию Дирихле, а на основании полуцилиндра задано спектральное условие Стеклова. Основной результат состоит в доказательстве теоремы о сходимости собственных элементов такой сингулярно возмущенной краевой задачи к собственным элементам предельной задачи (в полуцилиндре без полости) при стремлении к нулю малого параметра ε > 0, характеризующего диаметр полости. Для доказательства теоремы было введено гильбертово пространство бесконечно дифференцируемых вектор-функций, обладающих конечным интегралом Дирихле по полуцилиндру. В отличие от ситуации с ограниченной областью, в исследуемой краевой задаче условие конечности интеграла Дирихле является существенным, так как оно обеспечивает в целом конечность нормы в введенном пространстве. Ограничение на конечность интеграла Дирихле позволило установить априорные оценки, гарантирующие единственность решений предельной и возмущенной краевых задач и установить эквивалентность норм, необходимую для доказательства существования решения исследуемой сингулярно возмущенной краевой задачи. Библ. 42. Фиг. 1.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации