В представленной работе в случае однородной среды описан дуализм пространств солитонных решений и решений индуцированного функционально-дифференциального уравнения точечного типа, сформулированы теоремы существования и единственности для таких дуальных решений. Такой дуализм относится к ряду дуализмов различных математических объектов и, в частности, такого как топологическое линейное пространство и сопряженное к нему пространство. В случае неоднородной среды описан дуализм другого типа для пространств квазисолитонных решений и решений индуцированного однопараметрического семейства функционально-дифференциального уравнения точечного типа, сформулированы теоремы существования и единственности для таких дуальных решений. Для конечноразностного аналога волнового уравнения с нелинейным потенциалом построено все семейство солитонных (в случае однородной среды) и квазисолитонных (в случае неоднородной среды) решений. Библ. 15. Фиг. 7.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации