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Определение подходящего размера выборки имеет решающее значение для построения эффективных мо-
делей машинного обучения. Существующие методы часто либо не имеют строгого теоретического обосно-
вания, либо привязаны к конкретным статистическим гипотезам о параметрах модели. В настоящей работе
представляются два новых метода, основанных на значениях правдоподобия на бутстрапированных подвы-
борках. Демонстрируется корректность одного из этих методов на в модели линейной регрессии. Вычисли-
тельные эксперименты как с синтетическими, так и с реальными наборами данных показывают, что предло-
женные функции сходятся по мере увеличения размера выборки, что подчеркивает практическую полезность
подхода. Библ. 13. Фиг. 4. Табл. 1.

Ключевые слова: достаточный размер выборки, бутстрапирование правдоподобия, линейная регрессия, вы-
числительная линейная алгебра.

DOI: 10.31857/S0044466925020094, EDN: CBDKTA

1. ВВЕДЕНИЕ

Задача машинного обучения с учителем предполагает выбор предсказательной модели из некоторого пара-
метрического семейства. Обычно такой выбор связан с некоторыми статистическими гипотезами, например,
максимизацией некоторого функционала качества. Модель, которая соответствует этим статистическим гипо-
тезам, называется адекватной моделью [1, 2].

При планировании вычислительного эксперимента требуется оценить минимальный размер выборки — ко-
личество объектов, необходимое для построения адекватной модели. Размер выборки, необходимый для по-
строения адекватной модели прогнозирования, называется достаточным [3–5].

В работе рассматривается проблема определения достаточного размера выборки. Этой теме посвящено
большое число работ. Используемые в них подходы можно разделить на статистические, байесовские и эври-
стические.

Одни из первых исследований по данной теме [6,7] формулируют определенный статистический критерий,
где связанный с данным критерием метод оценки размера выборки гарантирует достижение фиксированной
статистической мощности с величиной ошибки I рода, не превышающей заданного значения. К статистиче-
ским методам относятся метод множителей Лагранжа [8], метод проверки отношения правдоподобия [9], метод
Вальда [10]. Статистические методы имеют ряд ограничений, которые связаны с их применением на практике.
Они позволяют оценить размер выборки, исходя из предположений о распределении данных и информации о
соответствии наблюдаемых величин предположениям нулевой гипотезы.

Байесовский подход тоже имеет место в данной проблеме. В работе [11] достаточный размер выборки опре-
деляется исходя из максимизации ожидаемой функции полезности. Она может включать в себя в явном виде
функции распределения параметров и штрафы за увеличение размера выборки. Также в этой работе рассмат-
риваются альтернативные подходы, основанные на ограничении некоторого критерия качества оценки пара-
метров модели. Среди таких критериев можно выделить критерий средней апостериорной дисперсии (APVC),
критерий среднего покрытия (ACC), критерий средней длины (ALC) и критерий эффективного объема выбор-
ки (ESC). Эти критерии получили свое развитие в других работах, например, [12] и [13]. Спустя время, в [14]
было проведено теоретическое и практическое сравнение методов из [6, 7, 11].
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В работе [15], как и в [16], рассматриваются различия между байесовским и частотным подходами при опре-
делении размера выборки. Также предлагаются робастные методы для байесовского подхода и приводятся на-
глядные примеры для некоторых вероятностных моделей.

В работе [17] рассматриваются различные методы оценки размера выборки в обобщенных линейных моде-
лях, включая статистические, эвристические и байесовские методы. Анализируются такие методы, как тест на
множители Лагранжа, тест на отношение правдоподобия, статистика Вальда, кросс-валидация, бутстрап, кри-
терий Кульбака–Лейблера, критерий средней апостериорной дисперсии, критерий среднего охвата, критерий
средней длины и максимизация полезности. Указывается на возможное развитие темы, которое заключается
в поиске метода, сочетающего байесовский и статистический подходы для оценки размера выборки для недо-
статочного доступного размера выборки.

В [18] рассматривается метод определения размера выборки в логистической регрессии, использующий
кросс-валидацию и дивергенцию Кульбака–Лейблера между апостериорными распределениями параметров
модели на схожих подвыборках. Под схожими подвыборками понимают такие подвыборки, которые могут быть
получены друг из друга добавлением, удалением или заменой одного объекта.

В настоящей работе рассматриваются несколько подходов к определению достаточного размера выборки.
Предлагается оценивать математическое ожидание и дисперсию функции правдоподобия на бутстрапирован-
ных подвыборках. Малое изменение этих величин при добавлении очередного объекта свидетельствует о до-
стижении достаточного числа объектов в выборке. Доказывается корректность определения в модели линей-
ной регрессии. Представленный метод легко использовать и на практике. Для этого предлагается подсчитывать
значение функции ошибки, а не правдоподобия.

2. ПОСТАНОВКА ЗАДАЧИ

Объектом называется пара (x, y), где x ∈ X ⊆ Rn есть вектор признакового описания объекта, а y ∈ Y есть
значение целевой переменной. В задаче регрессии Y = R, а в задаче K-классовой классификации Y = {1, . . . ,K}.

Матрицей объекты-признаки для выборки 𝒟m = {(xi, yi)} , i ∈ ℐ = {1, . . . ,m}, размера m называется матрица
Xm = [x1, . . . ,xm]T ∈ Rm×n.

Вектором ответов (вектором значений целевой переменной) для выборки𝒟m = {(xi, yi)} , i ∈ ℐ = {1, . . . ,m},
размера m называется вектор ym =

[︀
y1, . . . , ym

]︀T
∈ Ym.

Моделью называется параметрическое семейство функций f , отображающих декартово произведение мно-
жества значений признакового описания объектов X и множества значений параметров W во множество зна-
чений целевой переменной Y:

f : X ×W→ Y.
Вероятностной моделью называется совместное распределение вида

p(y,w|x) = p(y|x,w)p(w) : Y ×W × X→ R+,

где w ∈ W есть набор параметров модели, p(y|x,w) задает правдоподобие объекта, а p(w) задает априорное
распределение параметров.

Функцией правдоподобия простой выборки𝒟m = {(xi, yi)} , i ∈ ℐ = {1, . . . ,m}, размера m называется функция

L(𝒟m,w) = p(ym|Xm,w) =
m∏︁

i=1

p(yi|xi,w).

Ее логарифм

l(𝒟m,w) =
m∑︁

i=1

log p(yi|xi,w)

называется логарифмической функцией правдоподобия. Далее, если не оговорено противное, будем считать вы-
борку простой.

Оценкой максимума правдоподобия набора параметров w ∈W по подвыборке𝒟k размера k называется

ŵk = arg max
w∈W

L(𝒟k,w).

Ставится задача определения достаточного размера выборки m*. Пусть задан некоторый критерий T . Он
может быть построен, например, на основе эвристик о поведении параметров модели.

Определение 1. Размер выборки m* называется достаточным согласно критерию T , если T выполняется для
всех k ⩾ m*.
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3. ПРЕДЛАГАЕМЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ДОСТАТОЧНОГО РАЗМЕРА ВЫБОРКИ

В этом разделе будем считать, что достоверно m* ⩽ m. Это означает, что нам нужно просто формализовать,
какой размер выборки можно считать достаточным. Для определения достаточности будем использовать функ-
цию правдоподобия. Когда в наличии имеется достаточно объектов, вполне естественно ожидать, что от одной
реализации выборки к другой полученная оценка параметров не будет сильно меняться [7, 19]. То же можно
сказать и про функцию правдоподобия. Таким образом, сформулируем, какой размер выборки можно считать
достаточным.

Определение 2. Зафиксируем некоторое положительное число ε > 0. Размер выборки m* называется
D-достаточным, если для всех k ⩾ m*

D(k) = Dŵk L(𝒟m, ŵk) ⩽ ε.

С другой стороны, когда в наличии имеется достаточно объектов, также вполне естественно, что при добав-
лении очередного объекта в рассмотрение полученная оценка параметров не будет сильно меняться. Сформу-
лируем еще одно определение.

Определение 3. Зафиксируем некоторое положительное число ε > 0. Размер выборки m* называется
M-достаточным, если для всех k ⩾ m*

M(k) =
⃒⃒
Eŵk+1 L(𝒟m, ŵk+1) − Eŵk L(𝒟m, ŵk)

⃒⃒
⩽ ε.

В определениях выше вместо функции правдоподобия L(𝒟m, ŵk) можно рассматривать ее логарифм
l(𝒟m, ŵk).

Предположим, что W = Rn. Напомним, что информацией Фишера называется матрица

[I(w)]i j = −E
[︂
∂2 log p(y|x,w)
∂wi∂w j

]︂
.

Известным результатом является асимптотическая нормальность оценки максимума правдоподобия, то

есть
√

k (ŵk −w)
d
−→ 𝒩

(︀
0, I−1(w)

)︀
. Из сходимости по распределению в общем случае не следует сходимость мо-

ментов случайного вектора. Тем не менее, если предположить последнее, то в некоторых моделях можно дока-
зать корректность предложенного определения M-достаточного размера выборки.

Для удобства обозначим параметры распределения ŵk следующим образом: математическое ожидание
Eŵk = mk и матрица ковариации Dŵk = Σk. Тогда имеет место следующая теорема, доказательство которой
приведено в Приложении.

Теорема 1. Пусть ‖mk+1−mk‖2 → 0 и ‖Σk+1−Σk‖F → 0 при k → ∞. Тогда в модели линейной регрессии определение
M-достаточного размера выборки является корректным. А именно, для любого ε > 0 найдется такой m*, что для
всех k ⩾ m* выполнено M(k) ⩽ ε.

Следствие 1. Пусть ‖mk −w‖2 → 0 и ‖Σk − [kI(w)]−1 ‖F → 0 при k → ∞. Тогда в модели линейной регрессии
определение M-достаточного размера выборки является корректным.

По условию задана одна выборка. Поэтому в эксперименте нет возможности посчитать указанные в опре-
делениях математическое ожидание и дисперсию. Для их оценки воспользуемся техникой бутстрап. А именно,
сгенерируем из заданной 𝒟m некоторое число B подвыборок размера k с возвращением. Для каждой из них
получим оценку параметров ŵk и посчитаем значение L(𝒟m, ŵk). Для оценки будем использовать выборочное
среднее и несмещенную выборочную дисперсию (по бутстрап-выборкам).

Предложенные выше определения можно применять и в тех задачах, когда минимизируется произволь-
ная функция потерь, а не максимизируется функция правдоподобия. Мы не приводим никаких теоретических
обоснований этого, однако на практике такая эвристика оказывается достаточно удачной.

4. ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ

В данном разделе проводится эмпирическое исследование предлагаемых методов. Эксперименты прово-
дятся на синтетических данных и на выборке Liver Disorders из библиотеки [20]. Полностью воспроизводимый
код экспериментов доступен в GitHub репозитории (https://github.com/kisnikser/Likelihood-Bootstrapping).

Синтетические данные сгенерированы из моделей линейной и логистической регрессий. Число объек-
тов 1000, число признаков 20. Используется B = 1000 бустрапированных подвыборок. Подсчитываются зна-
чения функций D и M. Датасет с задачей регрессии Liver Disorders содержит 345 объектов и 5 признаков. Мы
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также используем B = 1000 бутстрапированных подвыборок для оценки математического ожидания и диспер-
сии функции ошибки.

На фиг. 1 можно видеть полученные зависимости между используемым размером подвыборки k и рассмат-
риваемыми функциями D и M для синтетической выборки с задачей регрессии. Результаты для синтетической
выборки с задачей классификации представлены на фиг. 2. В то же время, на фиг. 3 мы видим аналогичные гра-
фики для датасета Liver Disorders. Видно, что во всех случаях значения функций D и M стремятся к нулю при
увеличении размера выборки. Эти эмпирические результаты подтверждают теоретические, полученные ранее.

В определениях D-достаточности и M-достаточности участвует гиперпараметр ε, который отвечает за порог
для достаточного размера выборки m*. С целью изучения зависимости между ними, мы представляем фиг. 4,
где указано, какой размер выборки следует выбрать, чтобы обеспечить определенный уровень уверенности.

Чтобы сравнить эффективность предложенных методов на разных наборах данных, были выбраны выборки
из открытой библиотеки [20]. Подробная информация о каждом наборе данных, количество наблюдений и
количество признаков представлены в табл. 1. Для демонстрационных целей были выбраны такие значения
гиперпараметра ε, при которых значения функций D и M уменьшаются в два раза. Соответствующие результаты
приведены в табл. 1. Пропуски означают, что первоначальный размер выборки недостаточен.
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Фиг. 1. Сходимость предлагаемых функций D и M для выборки синтетической регрессии, т.е. модели линейной регрессии.
Обе функции стремятся к нулю при увеличении размера выборки.
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Фиг. 2. Сходимость предлагаемых функций D и M для выборки синтетической классификации, т.е. модели логистической
регрессии. Обе функции стремятся к нулю при увеличении размера выборки.
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Фиг. 3. Сходимость предлагаемых функций D и M для выборки Liver Disorders. Обе функции стремятся к нулю при увели-
чении размера выборки.
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Фиг. 4. Зависимость достаточного размера выборки от значения порога на трех наборах данных: синтетическая регрессия,
синтетическая классификация и Liver Disorders. При увеличении значения порога ε достаточный размер уменьшается. Это
означает, что можно выбирать меньше объектов для удовлетворения желаемых значений предлагаемых функций D и M.

5. ОБСУЖДЕНИЕ

В статье предлагаются два новых метода определения достаточного размера выборки, основанные на зна-
чениях правдоподобия на бутстрапированных подвыборках. Первый метод, называемый D-достаточностью,
основан на дисперсии функции правдоподобия, в то время как второй, M-достаточность, фокусируется на раз-
ности в математическом ожидании функции правдоподобия при добавлении одного объекта в выборку. Де-
монстрируется корректность определения M-достаточности в модели линейной регрессии при определенных
условиях на параметры модели.

Вычислительные эксперименты, проведенные как на синтетических, так и на реальных выборках, показы-
вают, что предлагаемые функции D и M стремятся к нулю при увеличении размера выборки. Эксперименты
также подчеркивают практическую значимость методов, поскольку они могут быть легко применены к различ-
ным наборам данных.

Предлагаемые методы потенциально могут быть применены к широкому спектру моделей и наборов дан-
ных, помимо линейной регрессии. Хотя мы доказали корректность определения M-достаточного размера вы-
борки только для линейной регрессии, эмпирические результаты показывают, что эти методы могут быть эф-
фективны и для других моделей. Будущая работа должна быть сосредоточена на распространении теоретиче-
ского анализа на другие модели, включая, вероятно, нейронные сети.
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Таблица 1. Сравнение предлагаемых методов определения достаточного размера выборки: на основе D и M. Для каждой
из предлагаемых функций подбирается такой значение порога, что ее изначальное значение уменьшается вдвое. Резуль-
таты представлены для набора выборок с задачей регрессии. Пропуски в данных означают, что исходный размер выборки
недостаточен.

Название Объекты m Признаки n D M

Abalone 4177 8 96 96

Auto MPG 392 8 15 15

Automobile 159 25 70 156

Liver Disorders 345 6 12 19

Servo 167 4 41 —

Forest fires 517 12 208 —

Wine Quality 6497 12 144 144

Energy Efficiency 768 9 24 442

Student Performance 649 32 129 177

Facebook Metrics 495 18 31 388

Real Estate Valuation 414 7 15 23

Heart Failure Clinical Records 299 12 63 224

Bone marrow transplant: children 142 36 — —

6. ЗАКЛЮЧЕНИЕ

В статье представлены два новых метода, D-достаточность и M-достаточность, для определения достаточ-
ного размера выборки на основе значений правдоподобия на бутстрапированных подвыборках. Корректность
определения M-достаточного размера выборки продемонстрирована в модели линейной регрессии, а вычисли-
тельные эксперименты на синтетических и реальных наборах данных показывают, что предложенные функции
сходятся к нулю по мере увеличения размера выборки, что подчеркивает практичность методов.
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ПРИЛОЖЕНИЕ

Доказательство теоремы 1

Доказательство. Рассмотрим определение M-достаточного размера выборки в терминах логарифма функ-
ции правдоподобия. В модели линейной регрессии

L (𝒟m, ŵk) = p(y|X, ŵk) =
m∏︁

i=1

p(yi|xi, ŵk) =
m∏︁

i=1

𝒩
(︀
yi|ŵ

⊤
k xi, σ

2)︀ = (︀
2πσ2)︀−m/2

exp
(︂
−

1
2σ2 ‖y −Xŵk‖

2
2

)︂
.

Прологарифмируем:

l (𝒟m, ŵk) = log p(y|X, ŵk) = −
m
2

log
(︀
2πσ2)︀ − 1

2σ2 ‖y −Xŵk‖
2
2.

Возьмем математическое ожидание по𝒟k, учитывая, что E𝒟kŵk =mk и cov(ŵk) = Σk:

E𝒟k l (𝒟m, ŵk) = −
m
2

log
(︀
2πσ2)︀ − 1

2σ2

(︁
‖y −Xmk‖

2
2 + tr

(︀
X⊤XΣk

)︀ )︁
.

Запишем выражение для разности математических ожиданий:

E𝒟k+1 l(𝒟m, ŵk+1) − E𝒟k l(𝒟m, ŵk) =

=
1

2σ2

(︁
‖y −Xmk‖

2
2 − ‖y −Xmk+1‖

2
2

)︁
+

1
2σ2 tr

(︁
X⊤X

(︁
Σk −Σk+1

)︁)︁
=

=
1

2σ2

(︁
2y⊤X(mk+1 −mk) + (mk −mk+1)⊤X⊤X(mk +mk+1)

)︁
+

+
1

2σ2 tr
(︁
X⊤X (Σk −Σk+1)

)︁
.
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Значение функции M(k) есть модуль от вышеприведенного выражения. Применим неравенство треуголь-
ника для модуля, а затем оценим каждое слагаемое.

Первое слагаемое оценим, используя неравенство Коши–Буняковского:⃒⃒
y⊤X(mk+1 −mk)

⃒⃒
⩽ ‖X⊤y‖2‖mk+1 −mk‖2.

Второе слагаемое оценим, используя неравенство Коши–Буняковского, свойство согласованности спек-
тральной матричной нормы, а также ограниченность последовательности векторов mk, которая следует из
предъявленной в условии сходимости:⃒⃒

(mk −mk+1)⊤X⊤X(mk +mk+1)
⃒⃒
⩽ ‖X(mk −mk+1)‖2‖X(mk +mk+1)‖2 ⩽

⩽ ‖X‖22‖mk −mk+1‖2‖mk +mk+1‖2 ⩽ C‖X‖22‖mk −mk+1‖2.

Последнее слагаемое оценим, используя неравенство Гёльдера для нормы Фробениуса:⃒⃒⃒
tr
(︁
X⊤X (Σk −Σk+1)

)︁⃒⃒⃒
⩽ ‖X⊤X‖F‖Σk −Σk+1‖F .

Наконец, поскольку ‖mk −mk+1‖2 → 0 и ‖Σk − Σk+1‖F → 0 при k → ∞, то M(k) → 0 при k → ∞, что доказывает
теорему.

Доказательство следствия 1

Доказательство. Из приведенных в условии сходимостей следует, что ‖mk −mk+1‖2 → 0 и ‖Σk − Σk+1‖F → 0
при k → ∞. Применение теоремы 1 заканчивает доказательство.
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Abstract. Determining the appropriate sample size is crucial for building effective machine learning models.
Existing methods often either lack a rigorous theoretical basis or are tied to specific statistical hypotheses
about the model parameters. In this paper, we present two new methods based on likelihood values on
bootstrapped subsamples. We demonstrate the correctness of one of these methods in a linear regression
model. Computational experiments with both synthetic and real datasets show that the proposed functions
converge as the sample size increases, highlighting the practical usefulness of the approach.
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