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В данной работе рассматривается пример совместного использования сеточно-характеристического метода
на регулярных структурированных расчетных сетках и разрывного метода Галеркина на тетраэдральных сет-
ках для решения трехмерной прямой задачи распространения упругих волн в геологической среде, состоящей
из четырех слоев, представляемых в виде линейно-упругой среды, с разными параметрами и произвольными
криволинейными границами. Для сшивки численных методов используется специальный алгоритм, учиты-
вающий особенности перехода от нерегулярной тетраэдральной расчетной сетки к регулярной структури-
рованной расчетной сетки в трехмерном пространстве. Приведен сравнительный анализ сходимости полу-
ченного комбинированного метода с сеточно-характеристическим методом на криволинейных структуриро-
ванных расчетных сетках в зависимости от изменения шага по пространственным направлениям. Получено
волновое поле модуля скорости распространения возмущения от источника. Библ. 32. Фиг. 14. Табл. 3.
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1. ВВЕДЕНИЕ

Способы получения сейсмических и геофизических данных являются важным приложением в задачах науки
о Земле. Некоторые данные могут быть получены в результате прямых измерений и наблюдений в результате
природных и техногенных явлений, например, при эксплуатации сети широкополосных сейсмических стан-
ций [1], при измерении профиля сейсмических отражений вследствие подрыва динамита разной мощности [2],
при использовании сейсмической томографии и анализе сейсмических волн и сейсмичности [3], методов ана-
лиза спутниковых изображений высокого разрешения [4]. При получении синтетических сейсмических данных
широкое распространение получили численные подходы, основанные на технологии полноволновой сейсмо-
разведки [5], в рамках которой действует предположение о слоистой геологической среде и рассматриваются
отраженные, дифрагированные и рассеянные упругие волны.

Актуальными методами моделирования распространения волн в упругих и вязкоупругих средах являют-
ся различные конечно-разностные методы [6–8], конечно-элементные методы [9, 10], в частности разрыв-
ный метод Галеркина [11–13]. При этом активно разрабатываются их модификации в зависимости от степе-
ни анизотропности рассматриваемых сред [11, 12, 14], необходимости использования сложных криволиней-
ных [11, 14, 15] границ для описания поверхностей и контактных областей, что приводит к дополнительным
сложностям при построении регулярных и нерегулярных расчетных сеток [16,17], тем не менее, в ряде случаев
оказывается удобным использовать т.н. наложенные расчетные сетки [18–20]. В силу гиперболичности опреде-
ляющих распространение упругих волн в геологической среде уравнений возможно использование их характе-
ристических свойств, т.е. применить при переходе к конечно-разностной задаче сеточно-характеристический
метод [20, 21].

1) Работа выполнена при финансовой поддержке РНФ (код проекта № 20-71-10028), https://rscf.ru/project/20-71-10028/.
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Комбинирование конечно-элементных подходов, в частности разрывного метода Галеркина, с другими чис-
ленными методами является довольно популярной современной научной тематикой, так в [22] предложено со-
четать конечно-элементный и конечно-разностный подходы для лучшей обработки граничных областей меж-
ду изотропными упругими средами. В [23] используется промежуточный расчетный слой с разрывным мето-
дом Галеркина на структурированных сетках, в [24] внешний поток интегрируют с помощью квадратуры Гаусса
по 3 точкам, значения в которых ищут с помощью интерполяционного полинома Лагранжа третьего поряд-
ка, узлы сеток в обеих работах совпадают. В данной работе предложено использовать совместно с сеточно-
характеристическим методом на структурированных расчетных сетках разрывный метод Галеркина на тетра-
эдральных сетках для описания границ криволинейной формы так, чтобы избежать интегрирования и исполь-
зования дополнительного расчетного слоя.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ПОСТАНОВКА ЗАДАЧИ

В геологических породах распространение сейсмических волн моделируется при помощи поиска решения
следующей начально-краевой задачи:

ρ
∂

∂t
v (r, t) = (∇ · σ (r, t))T, (1)

∂

∂t
σ (r, t) =

(︀
ρc2

P − 2ρc2
S

)︀
(∇ · v (r, t)) I + ρc2

P

(︀
∇ ⊗ v (r, t) + (∇ ⊗ v (r, t))T)︀ . (2)

В уравнениях (1), (2) r – радиус-вектор, t – время, ∇ – вектор-градиент, ⊗ – тензорное произведение век-
торов, (a ⊗ b) = aib j, v (r, t) – скорость (производная смещений бесконечно малого элемента материала по вре-
мени), σ (r, t) – симметричный тензор напряжений Коши, I – единичный тензор второго ранга, ρ – плотность
геологической среды, cP, cS – скорости распространения продольных P-волн и поперечных S-волн соответ-
ственно в рассматриваемой геологической среде.

На фиг. 1–4 представлен пример расчетной области геологической среды, состоящей из четырех слоев с
криволинейными границами и различными упругими параметрами.

На поверхности геологической среды заданы точечный источник в виде импульса Риккера (3) с частотой
20 Гц условие свободной границы (4), на всех остальных внешних границах области интегрирования – неотра-
жающие граничные условия, на границах раздела сред – контактные условия полного слипания (5):(︀

1 − 2(π f (t − t0))2)︀ e−(π f (t−t0))2
, (3)

σ · n = 0, (4)

σ1 · n = σ2 · n, v1 = v2, (5)

где n – нормаль к поверхности раздела соседних геологических сред.

Фиг. 1. Геологическая модель: границы раздела геологических сред.
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Фиг. 2. Геологическая модель: распределение скорости P-волн.
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Фиг. 3. Геологическая модель: распределение скорости S-волн.
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Фиг. 4. Геологическая модель: распределение плотности.

3. ЧИСЛЕННЫЕ МЕТОДЫ

3.1. Сеточно-характеристический метод

Для численного решения системы уравнений (1), (2) применяется сеточно-характеристический метод. Си-
стему в трехмерном случае можно представить в следующем виде:

∂

∂t
q +A

∂

∂x
q + B

∂

∂y
q +C

∂

∂z
q = 0, (6)

q =

(︂
v
σ

)︂
=
{︀

vx, vy, vz, σxx, σyy, σzz, σxy, σxz, σyz
}︀T
, (7)
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далее производится расщепление по пространственным направлениям и внутри каждой полученной одномер-
ной гиперболической системы осуществляется переход к инвариантам Римана [25], используя следующие вы-
ражения (рассмотрим для определенности направление OX):

ω
X
1,2 = vX ∓

1
ρcP
σXX,

ω
X
3,4 = vY ∓

1
ρcS
σXY,

ω
X
5,6 = vZ ∓

1
ρcS
σXZ,

ω
X
7 = σYZ,

ω
X
8 = σYY − σZZ,

ω
X
9 = σYY + σZZ − 2kσXX,

где k = 1 − 2 c2
S

c2
P
.

Одномерные уравнения переноса с постоянными коэффициентами могут быть численно разрешены с уче-
том их характеристических свойств конечно-разностными схемами высокого порядка аппроксимации, напри-
мер, используя шаблон схемы на фиг. 5, введя вдоль границ расчетной сетки дополнительный набор мнимых
узлов [26].

Полученные на верхнем временном слое значения инвариантов Римана используются для обратного пере-
хода к неизвестным функциям из систем уравнений (1), (2) согласно следующим выражениям:

v =
1
2
{︀
ω

X
1 + ω

X
2 ,ω

X
3 + ω

X
4 ,ω

X
5 + ω

X
6

}︀T
,

σXX = ρcP
(︀
ω

X
2 − ω

X
1

)︀⧸︀
2,

σXY,XZ = ρcS
(︀
ω

X
4,6 − ω

X
3,5

)︀⧸︀
2,

σYZ = ω
X
7 ,

σYY, ZZ =
(︀
kρcP

(︀
ω

X
2 − ω

X
1

)︀
+ ωX

9 ± ω
X
8

)︀⧸︀
2.

3.2. Разрывный метод Галеркина

В [26] подробно описан алгоритм построения разрывного метода Галеркина при рассмотрении уравнений
линейной упругой среды в двумерном случае. В трехмерном случае функции неизвестных из (6), (7) расклады-
вают по выбранному базису ортогональных функцийΦi

(︀
ξ, η, ζ

)︀
, например, полиномам Дубинера, в единичном

тетраэдре TE :

qm
k (x, y, z, t) =

10∑︁
l=1

qm
pl (t) · Φm

l (x, y, z) =
10∑︁
l=1

qm
pl (t) ·Φl

(︀
ξ

m (x, y, z) , ηm (x, y, z) , ζm (x, y, z)
)︀
, (8)

Φ1
(︀
ξ, η, ζ

)︀
= 1,

Φ2
(︀
ξ, η, ζ

)︀
= 4ξ − 1,

Φ3
(︀
ξ, η, ζ

)︀
= ξ + 3η − 1,

Φ4
(︀
ξ, η, ζ

)︀
= ξ + η + 2ζ − 1,

Φ5
(︀
ξ, η, ζ

)︀
= 15ξ2 − 10ξ + 1,

Φ6
(︀
ξ, η, ζ

)︀
= ξ2 + 10η2 + 8ξη − 2ξ + 1,

Фиг. 5. Шаблон разностной схемы для численного решения одномерных уравнений переноса.
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Φ7
(︀
ξ, η, ζ

)︀
= ξ2 + η2 + 6ζ2 + 2ξη + 6ξζ + 6ηζ − 2ξ − 2η − 6ζ + 1,

Φ8
(︀
ξ, η, ζ

)︀
= 6ξ2 + 18ξη − 7ξ − η − 3η + 1,

Φ9
(︀
ξ, η, ζ

)︀
= 6ξ2 + 6ξη + 12ξζ − 7ξ − η − 2ζ + 1,

Φ10
(︀
ξ, η, ζ

)︀
= ξ2 + 5η2 + 6ξη + 2ξζ + 10ηζ − 2ξ − 6η − 2ζ + 1

и получают полудискретную форму решаемой гиперболической системы уравнений:

∂q(m)
pl

∂t
|J|

∫︁
TE

ΦlΦkdΩ +
4∑︁

j=1

Fh, j,−
pl

⃒⃒
S j
⃒⃒ ∫︁
(∂TE ) j

ΦlΦkds +
4∑︁

j=1

Fh, j,+
pl

⃒⃒
S j
⃒⃒ ∫︁
(∂TE ) j

ΦlΦkds−

−A*pqq(m)
pl |J|

∫︁
TE

Φl
∂Φk

∂ξ
dΩ − B*pqq(m)

pl |J|
∫︁
TE

Φl
∂Φk

∂η
dΩ −C*pqq(m)

pl |J|
∫︁
TE

Φl
∂Φk

∂ζ
dΩ = 0, (9)

где m – номер тетраэдра, p – компонента вектора (7), qm
pl – коэффициенты в разложении решения по базису ор-

тогональных функций в тетраэдре m, причем первый индекс соответствует компоненте вектора неизвестных,
|J| – якобиан из координат узлов рассматриваемого тетраэдра, Fh, j,−

pl и Fh, j,+
pl – выходящий и входящий пото-

ки,
⃒⃒
S j
⃒⃒

– площадь j-й грани тетраэдра (∂TE) j, матрицы A*pq, B*pq и C*pq выражаются через коэффициенты ре-
шаемой гиперболической системы уравнений (6) и координаты рассматриваемого тетраэдра. В уравнении (9)
интегралы вычисляются аналитически и заранее, так как набор ортогональных базисных функций известен, а
итоговую систему решают итерационным методом по времени, например, методами Рунге–Кутты. Реализация
граничных и контактных условий выполняется также путем особого алгоритма расчета входящих потоков на
граничных и контактных ячейках.

3.3. Комбинированный метод

Для создания комбинированного метода необходимо корректно вычислять решения вблизи границы меж-
ду подобластями, в которых используются сеточно-характеристический метод и разрывный метод Галеркина
соответственно. Условие устойчивости сеточно-характеристического метода можно записать следующим об-
разом:

τ ≤ min
a

ha,k

cP,a
,

где τ – щаг по времени, ha,k – шаг по координате, a – номер расчетной сетки, k – направление, k ∈ {X,Y,Z}.
Условие устойчивости разрывного метода Галеркина может быть записано в виде

τ ≤
1

2N + 1
min

a, j

ha, j

cP
=

1
5

min
ha, j

cP
,

где ha, j есть j-я высота тетраэдра под номером a, N – порядок полиномов базисных функций.
На выбор шагов по координатам структурированной сетки и размера тетраэдральных ячеек влияют длина

P- и S-волн, волн Рэлея, геометрия расчетной области. Возможно использование разных вариантов контакта
структурированной регулярной и неструктурированной тетраэдральной расчетных сеток (фиг. 6).

В двумерном случае задача максимальной минимальной высоты будет выполняться в случае равносторон-
него треугольника, контактирующего с регулярной расчетной сеткой, а в трехмерном случае мы имеем тетра-
эдры вида

(0, 0, 0) ; (hX , 0, 0) ; (0, hY , 0) ; (x0, y0, z0) .

Высоты найдутся по следующим формулам:

HABC = z0,

HACD =
z0hX√︀

(z0)2 + (x0)2
,

HABD =
z0hY√︀

(z0)2 + (y0)2
,
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(а)

(б)

(в)

Фиг. 6. Варианты контакта структурированной регулярной и неструктурированной треугольной расчетных сеток с различ-
ной кратностью k, плоскость контакта: (а) — для k = 2, (б) — для k = 4, (в) — для k = 7.

HBCD =
hXhYz0√︀

(hYz0)2 + (hXz0)2 + (hXhY − hXy0 − hY x0)2
.

Для тетраэдральной сетки максимальная кратность (int)
(︁

5
√

2
)︁
= 7, а в случае неравенства шагов по осям

OX и OY максимальная кратность составит (int)
(︁

5
√︀

1 + φ2
)︁

, hX/Y = φhY/X, φ < 1.

Предполагая одинаковую ориентацию тетраэдров вдоль границы с регулярной сеткой, для трехмерного слу-
чая входящие потоки граничных тетраэдров при одинарной кратности рассчитываются по формулам

Fh,1,+
pl |S 1|

∫︁
(∂TE )1

ΦlΦkds = |S 1|G1,+
pa

(︀
qdX ,dY

)︀
a

1∫︁
0

dξ

1−ξ∫︁
0

Φk
(︀
ξ, η, 0

)︀
dη±

± |S 1|G1,+
pa

(︀(︀
qdX±1,dY

)︀
a −

(︀
qdX ,dY

)︀
a

)︀ 1∫︁
0

ξdξ

1−ξ∫︁
0

Φk
(︀
ξ, η, 0

)︀
dη±

± |S 1|G1,+
pa

(︀(︀
qdX ,dY±1

)︀
a −

(︀
qdX ,dY

)︀
a

)︀ 1∫︁
0

ηdη

1−η∫︁
0

Φk
(︀
ξ, η, 0

)︀
dξ,

при двойной кратности

Fh,1,+
pl |S 1|

∫︁
(∂TE )1

ΦlΦkds = |S 1|G1,+
pa Θ

0,0
a

1∫︁
0

dξ

1−ξ∫︁
0

Φk
(︀
ξ, η, 0

)︀
dη + |S 1|G1,+

pa Θ
1,0
a

1∫︁
0

ξdξ

1−ξ∫︁
0

Φk
(︀
ξ, η, 0

)︀
dη+

+ |S 1|G1,+
pa Θ

0,1
a

1∫︁
0

ηdη

1−η∫︁
0

Φk
(︀
ξ, η, 0

)︀
dξ + |S 1|G1,+

pa Θ
1,1
a

1∫︁
0

ξdξ

1−ξ∫︁
0

η · Φk
(︀
ξ, η, 0

)︀
dη+

+ |S 1|G1,+
pa Θ

2,0
a

1∫︁
0

ξ
2dξ

1−ξ∫︁
0

Φk
(︀
ξ, η, 0

)︀
dη + |S 1|G1,+

pa Θ
0,2
a

1∫︁
0

η
2dη

1−η∫︁
0

Φk
(︀
ξ, η, 0

)︀
dξ,

Θ0,0
a =

(︀
qdX ,dY

)︀
a,

Θ1,0
a = ±

(︀
4
(︀
qdX±1,dY

)︀
a − 3

(︀
qdX ,dY

)︀
a −

(︀
qdX±2,dY

)︀
a

)︀
,

Θ0,1
a = ±

(︀
4
(︀
qdX ,dY±1

)︀
a − 3

(︀
qdX ,dY

)︀
a −

(︀
qdX ,dY±2

)︀
a

)︀
,

Θ2,0
a = 2

(︀
qdX ,dY

)︀
a − 4

(︀
qdX±1,dY

)︀
a + 2

(︀
qdX±2,dY

)︀
a,

Θ0,2
a = 2

(︀
qdX ,dY

)︀
a − 4

(︀
qdX ,dY±1

)︀
a + 2

(︀
qdX ,dY±2

)︀
a,
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Θ0,2
a = 2

(︀
qdX ,dY

)︀
a − 4

(︀
qdX ,dY±1

)︀
a + 2

(︀
qdX ,dY±2

)︀
a,

Θ1,1
a = 4

(︀(︀
qdX±1,dY±1

)︀
a +

(︀
qdX ,dY

)︀
a −

(︀
qdX±1,dY

)︀
a −

(︀
qdX ,dY±1

)︀
a

)︀
,

G1,+
pa = T m1

pq
1
2

Rqb (Λbr − |Λbr |) R−1
rs

(︀
T m1

sa

)︀−1
,

Λbr = diag {−cP,−cS,−cS, 0, 0, 0, cS, cS, cP} ,

где
(︀
qdX ,dY

)︀
a есть a-я компонента вектора неизвестных q в точке регулярной сетки с индексами dX, dY по осям

OX, OY соответственно. Точки {dX , dY }, {dX ± 1, dY }, {dX , dY ± 1} совпадают с точками горизонтальной грани тет-
раэдра. T m1

pq – матрица поворота 1-й грани, Rqb – матрица, составленная из собственных векторов рассматрива-
емой гиперболической системы. Отметим, что вариант вычисления входных потоков с большей чем 2 кратно-
стью делает необходимым вычисления в дополнительных узлах регулярной структурированной сетки, вариант
с кратностью 1 предполагает потерю точности вычисления входных потоков, поэтому вариант с кратностью 2
является наиболее оптимальным.

При реализации последовательной версии алгоритма вычислений в трехмерном случае вначале заполняют
значения в мнимых узлах регулярной расчетной сетки на границе с неструктурированной тетраэдральной сет-
кой путем использования формулы (8). Затем проводят вычисления во внутренних и граничных узлах сеточно-
характеристическим методом для нахождения решения на следующем временном слое и выделяют множество
точек вдоль границы с неструктурированной сеткой на n шаге интегрирования и на n+ 1/2, используя выраже-
ние:

qn+1/2
d =

qn
d + q

n+1
d

2
.

Далее выполняется использование предложенного подхода к комбинированию сеточно-характеристичес-
кого метода и разрывного метода Галеркина, рассмотренных ранее. При распараллеливании используется ал-
горитм разбиения отдельных расчетных сеток по процессам. При этом при разбиении тетраэдральной сетки
используется метод на основе задачи о разбиении графа на домены [27–29] с использованием стандартной мо-
дели графа. Существуют следующие пакеты, осуществляющие декомпозицию неструктурированных расчет-
ных тетраэдральных сеток: METIS, JOSTLE, SCOTCH, PT-SCOTCH, CHACO и PARTY, PARMETIS, ZOLTAN.
В рассматриваемой задаче распространения упругих волн декомпозиция расчетной сетки статическая и выпол-
няется на этапе препроцессинга, в связи с чем допустимо использовать не параллельные пакеты для декомпо-
зиции неструктурированной сетки.

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ

В этом разделе представлены результаты численного моделирования.
Для отладки и проверки сходимости комбинированного метода были проведены тестовые расчеты для по-

следовательной версии алгоритма вычислений в расчетной области в виде куба из одного материала с искус-
ственной криволинейной границей между расчетными сетками, в которых использовался метод Галеркина
(желтая и оранжевая на фиг. 7а), в оставшейся области использовался сеточно-характеристический метод для
регулярных структурированных расчетных сеток (серые на фиг. 7а). Тестирование проводилось при числе Ку-
ранта 0.4. Результаты расчетов с использованием комбинированного метода для разных шагов по координате

(а) (б)

Фиг. 7. Схема положения границы межу расчетными сетками в разрезе: (а) – комбинированный метод, (б) – сеточно-
характеристический метод на криволинейных структурированных расчетных сетках.
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Таблица 1. Исследование сходимости комбинированного метода: h – шаг по координате, м, E {L1} – ошибка по норме L1,
E {L∞} – ошибка по норме L∞, N1 – порядок сходимости по норме L1, N∞ – порядок сходимости по норме L∞.

h E {L1} E {L∞} N1 N∞

25 5145 0.280 – –

12.5 1258 0.067 2.032 2.070

6.25 339 0.019 1.890 1.807

3.125 92 0.005 1.879 1.809

Таблица 2. Исследование сходимости сеточно-характеристического метода на криволинейных структурированных расчет-
ных сетках: h – шаг по координате, м, E {L1}– ошибка по норме L1, E {L∞}– ошибка по норме L∞, N1 – порядок сходимости
по норме L1, N∞ – порядок сходимости по норме L∞.

h E {L1} E {L∞} N1 N∞

25 4927 0.249 – –

12.5 1460 0.076 1.755 1.720

6.25 440 0.023 1.730 1.713

3.125 132 0.007 1.733 1.712

1
2
3

Фиг. 8. Расчетные сетки при использовании комбинированного метода: 1, 2 – тетраэдральные, 3 – регулярные структури-
рованные.

приведены в табл. 1. Для сравнения в табл. 2 приведены результаты расчетов с использованием ранее разрабо-
танного сеточно-характеристического метода на криволинейных структурированных расчетных сетках (синяя
и зеленая на фиг. 7б) [25, 30–32] в этой же постановке. Видно, что предложенный комбинированный метод
обладает более высоким порядком сходимости. Также в табл. 3 приведено сравнение двух методов по затра-
там вычислительных ресурсов, из которого следует, что при измельчении расчетной сетки затраты становятся
меньше, так как доля объема вблизи криволинейных границ, разбиваемого на тетраэдры, уменьшается.

На фиг. 8 приведена расчетная область из фиг. 1–4, поделенная на тетраэдральные, прилегающие к поверх-
ности и криволинейным границам геологических пород, и регулярные структурированные расчетные сетки
для использования комбинированного метода. В регулярных сетках шаг вдоль направлений OX, OY равен 12.5
м, OZ – 10 м. Шаг по времени составил 0.4 мс, выполнено 2800 итераций по времени. В случае использова-
ния сеточно-характеристического метода на криволинейных структурированных расчетных сетках для границ
соседних областей создается расчетная сетка по специальному алгоритму, изложенному в работах [25, 30–32].
Полученные волновые поля модуля скорости с помощью сеточно-характеристического метода на криволиней-
ных структурированных расчетных сетках и комбинированного метода приведены для сравнения на фиг. 9–11
и фиг. 12–14 соответственно.
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Таблица 3. Затраты оперативной памяти и времени вычислений: h – шаг по координате, м, СХМ-РМГ – комбинирован-
ный метод, СХМ-КСС – сеточно-характеристический метод на криволинейных структурированных сетках, M – затраты
оперативной памяти, Гб, T – время вычислений, ч.

Метод СХМ-РМГ СХМ-КСС

h M T M T

25 1.808 0.683 0.56 0.183

12.5 7.616 5 4.16 2.716

6.25 27.9 35 33.8 43

3.125 170.5 495 241.7 726

ν, 
10–5 м/с

0.0
0.2
0.4
0.6
0.8
1.0

Фиг. 9. Волновая картина модуля скорости, полученая с использованием сеточно-характеристического метода на криволи-
нейных структурированных расчетных сетках: t = 0.448 c.

ν, 
10–5 м/с

0.0
0.2
0.4
0.6
0.8
1.0

Фиг. 10. Волновая картина модуля скорости, полученая с использованием сеточно-характеристического метода на криво-
линейных структурированных расчетных сетках: t = 0.784 c.
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ν, 
10–5 м/с

0.0
0.2
0.4
0.6
0.8
1.0

Фиг. 11. Волновая картина модуля скорости, полученая с использованием сеточно-характеристического метода на криво-
линейных структурированных расчетных сетках: t = 1.12 c.

ν, 
10–5 м/с

0.0
0.2
0.4
0.6
0.8
1.0

Фиг. 12. Волновая картина модуля скорости, полученая с использованием комбинированного метода: t = 0.448 c.

ν, 
10–5 м/с

0.0
0.2
0.4
0.6
0.8
1.0

Фиг. 13. Волновая картина модуля скорости, полученая с использованием комбинированного метода: t = 0.784 c.
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ν, 
10–5 м/с

0.0
0.2
0.4
0.6
0.8
1.0

Фиг. 14. Волновая картина модуля скорости, полученая с использованием комбинированного метода: t = 1.12 c.

5. ЗАКЛЮЧЕНИЕ

Полученные авторами результаты показывают сеточную сходимость предложенного алгоритма и дают ос-
нования использовать совместно сеточно-характеристический метод на регулярных сетках и разрывный ме-
тод Галеркина на тетраэдральных сетках применительно к задачам распространения упругих волн в сплошных
средах, в частности для прямых задач сейсмической разведки углеводородов и других полезных ископаемых.
Полученный комбинированный метод может быть применен и к другим объектам сложной формы, так как
позволяет описывать сложные границы путем построения тетраэдральных расчетных сеток и экономить вы-
числительные ресурсы при использовании структурированных регулярных расчетных сеток в остальных под-
областях интегрирования.
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Abstract. This paper considers an example of the combined use of the grid-characteristic method on
regular structured computational grids and the discontinuous Galerkin method on tetrahedral grids to
solve a three-dimensional direct problem of elastic wave propagation in a geological medium consisting
of four layers represented as a linear-elastic medium with different parameters and arbitrary curvilinear
boundaries. A special algorithm is used to stitch the numerical methods, taking into account the features of
the transition from an irregular tetrahedral computational grid to a regular structured computational grid
in three-dimensional space. A comparative analysis of the convergence of the resulting combined method
with the grid-characteristic method on curvilinear structured computational grids is given depending on
the change in the step in spatial directions. The wave field of the modulus of the disturbance propagation
velocity from the source is obtained.
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