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Получена система нестационарных уравнений с частными производными, описывающая неизотермические
течения пуазейлевского типа несжимаемой вязкоупругой полимерной жидкости в канале с сечением между
двумя софокусными эллипсами. Для системы поставлена начально-краевая задача, описывающая течение в
дюзе 3D принтера с нагревательным элементом при импульсном изменении градиента давления в дюзе и тем-
пературы элемента. Для численного решения задачи разработан алгоритм, учитывающий особенности иско-
мых функций и основанный на полиномиальных и дробно-рациональных приближениях по пространствен-
ным переменным и на применении неявной разностной схемы по времени. Исследованы распределения ско-
рости и температуры жидкости в канале, зависимости потока и средней температуры от времени, рассчитаны
критические соотношения между величинами амплитуд и продолжительностей импульсных воздействий на
жидкость, при задании которых течение теряет устойчивость. Библ. 32. Фиг. 9. Табл. 3.
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1. ВВЕДЕНИЕ

Развитие технологий экструзии, печати и напыления с применением новых электропроводящих полимер-
ных материалов представляет актуальную задачу [1,2]. Применение здесь методов предсказательного математи-
ческого моделирования наталкивается на проблему поиска критических значений параметров реологии жид-
кости и технологического процесса, при которых течения в каналах принтеров и экструдеров теряют устойчи-
вость и приобретают хаотичный и турбулентный характер [3]. Возникновение таких режимов течения крайне
нежелательно, поскольку приводит к дефектам изделий и не позволяет управлять технологическим процессом.

Необходимо отметить, что процесс потери устойчивости течения и переход к турбулентности в вязкоупругой
жидкости является намного более сложным, чем в классической ньютоновской жидкости. В частности, такой
переход может реализоваться при сколь угодно малых значениях числа Рейнольдса Re, что связано с упругими
свойствами молекул полимера. Систематизация экспериментальных данных и вывод общих критериев пере-
хода к упругой турбулентности в течениях с изогнутыми линиями тока обсуждается в [4]. В обзорной статье [3]
и статьях [5, 6] дан анализ критериев перехода к различным видам турбулентных течений в полимерных рас-
творах: упругому, инерционному и упруго-инерционному турбулентным режимам, которые реализуются при
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различных критических соотношениях между величиной Re, значением концентрации полимерной фазы и ве-
личиной безразмерного времени релаксации полимерного раствора – числа Вайсенберга W. В указанных ста-
тьях отмечено, что математическое описание этих переходов в случае течений с прямыми линиями тока типа
течений Пуазейля и Куэтта представляет собой открытую проблему.

Недавно в [7,8] был предложен новый подход к решению этой проблемы, использующий мезоскопические
модели динамики полимерных сред [9,10]. В рамках этого подхода потеря устойчивости стационарного течения
типа Пуазейля, объясняется тем, что действительное классическое решение соответствующих уравнений мезо-
скопической модели перестает существовать (разрушается). При этом разрушение решения в процессе уста-
новления объясняется возникновением у его аналитического продолжения в комплексную плоскость особой
точки, которая при изменении параметров модели или с течением времени может выходить в область решения
задачи. Следуя [7], можно заключить, что, по крайней мере, в стационарной осесимметричной задаче особая
точка решения как функции радиальной координаты расположена на действительной прямой. Указанный под-
ход развит и для анализа нестационарных эффектов в рамках одномерной мезоскопической модели, см. [11].
Предсказания о соотношениях между критическими значениями Re и W – их обратная пропорциональность,
полученные при использовании нового подхода, согласуются с результатами ряда экспериментов, см. заключе-
ние в [7]. Из анализа, проведенного в [7,8,11] следует, что адекватное описание потери устойчивости течений с
прямыми линиями тока требует учета анизотропии потока, связанной с микроструктурой полимера, а именно
с размером и ориентацией его макромолекул.

Вместе с тем заметим, что течения, возникающие в каналах экструдеров и 3D принтеров, существенно от-
личаются от установившихся течений типа Пуазейля. Например, в технологиях печати жидкость подвергается
импульсным воздействиям температуры и давления, за счет чего она порциями выходит из дюзы принтера. Та-
кие воздействия приводят к сложному вязкоупругому отклику полимерного материала, в связи с чем задача
становится существенно нестационарной, и критерии потери устойчивости должны быть пересмотрены.

В этой работе исследовано влияние импульсных воздействий градиента давления и температуры в канале
печатающего устройства на реализуемость пуазейлевского течения. Конкретно, рассмотрена дюза с сечением
эллиптической формы с нагревательным элементом, представляющим тонкую пластину внутри дюзы. Реоло-
гические параметры жидкости и технологического процесса заданы в соответствии с данными опубликованны-
ми в открытой печати, собранными в приложении статьи [12]. Дана постановка начально-краевой задачи, опи-
сывающей течение, разработан алгоритм численного решения задачи, и проведено моделирование нестацио-
нарного течения с начальными данными, соответствующими состоянию покоя жидкости. В рассматриваемой
постановке после выхода течения жидкости на стационарный режим задается резкий скачок давления в канале
или температуры нагревательного элемента. Проводится анализ распределений скорости и температуры жид-
кости и определяются параметры импульсных воздействий, при которых реализуется выход на стационарный
режим, либо расходимость соответствующего приближенного решения, что на практике можно ассоциировать
с потерей устойчивости и переходом к сложной турбулентной динамике.

Прежде чем приступать к математической формулировке проблемы, отметим еще два важных фактора. Во-
первых, мы будем опираться на подход к выводу разрешающих систем уравнений, предложенный в [13, 14].
Однако для учета геометрии области решения задачи и процесса теплопереноса требуется адаптация этого под-
хода, что несколько усложняет выкладки и позволяет получить новые постановки. Во-вторых, существенная
новизна содержится в разработанном способе аппроксимации решений по пространственным переменным:
используются прямые произведения полинома с ядром Дирихле и новой дробно-рациональной барицентри-
ческой интерполяции [15, 16]. Последняя позволяет адаптировать сетку из узлов Чебышёва к особенностям
искомых функций, которые, как указано выше, могут вплотную подходить к границе области задачи. Исполь-
зование таких приближений позволяет с высокой точностью определить критические значения параметров мо-
делируемого физического процесса.

2. ПОСТАНОВКА ЗАДАЧИ

Основываясь на уравнениях механики жидкости [17–19], дополненных реологическими соотношениями
из [9, 20], следуя [12], запишем уравнения реологической мезоскопической модели Покровского–Виноградова, ко-
торая описывает неизотермические течения несжимаемой вязкоупругой полимерной жидкости. Эти уравнения
в безразмерном виде в декартовой системе координат (x1, x2, x3) выглядят следующим образом:

divu = 0, (1)

du
dt
+ ∇P =

1
Re

div(YΠ) +
(︀
Fr−2

−Ga(Y − 1)
)︀
eg, (2)
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dai j

dt
−

3∑︁
l=1

∂ui

∂xl
al j −

3∑︁
l=1

∂u j

∂xl
ali −

1
W

(︂
∂ui

∂x j
+
∂u j

∂xi

)︂
+ Li j = 0, i, j = 1, 2, 3, (3)

dY
dt
=

1
Pr

(︂
△Y +CdYΦ

)︂
. (4)

Здесь t — время; u1, u2, u3 — компоненты вектора скорости u, P — давление;
ai j, i, j = 1, 2, 3 — компоненты симметрического тензора анизотропии Π второго ранга;
div(YΠ) = (div(Ya1), div(Ya2), div(Ya3))T – вектор;
a1, a2, a3 — столбцы симметрической матрицы Π = (ai j) = (a1,a2,a3);

Y =
T
T0

, T – температура, T0 = 293.15 K = 20∘C – температура окружающей среды,

Li j =

(︂
ai j

W
+

k(a11 + a22 + a33)
3

ai j + β(ai,aj)
)︂⧸︂

τ0(Y), i, j = 1, 2, 3;

k = k − β, k, β (0 < β < 1) — феноменологические параметры модели, характеризующие вклады, связан-
ные с анизотропией (величина β учитывает ориентацию макромолекулярного клубка, число k — его размеры,
см. [21, 22]), ниже полагаем k = 1.2β;

τ0 = τ0(Y) =
J(Y)

Y
, J(Y) = exp

(︂
−EA

Y − 1
Y

)︂
;

Re =
ρuHl
η*0

— число Рейнольдса; константа ρ — плотность среды;

W =
τ*0uH

l
— число Вейсенберга;

η*0, τ*0 — начальные значения сдвиговой вязкости и времени релаксации при T = T0;
Φ – диссипативная функция (ее выражение приведено в [12], см. также важные комментарии по поводу тер-
модинамической согласованности модели во введении статьи [23]), Cd – коэффициент диссипации уравнения
теплопроводности (4);

△ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 – оператор Лапласа;

d
dt
=
∂

∂t
+ (u,∇) – полная производная по времени;

Ga = Ra/Pr, EA = EA/T0;
постоянные Ra (число Рэлея), Pr (число Прандтля), Fr (число Фруда), EA (энергия активации) описаны в [9,17],
их значения, соответствующие рассмотренной постановке, указаны в приложении статьи [12], eg – единич-
ный вектор, определяющий направление силы тяжести (зададим его противоположно направленным оси x,
см. фиг. 1).

Далее для координат используем обозначения x, y, z (x = x1, y = x2, z = x3).
Система (1)–(4) записана в безразмерном виде: время t; координаты x, y, z; компоненты вектора скорости

u1, u2, u3; давление P; компоненты тензора анизотропии ai j отнесены к l/uH; l; uH; ρu2
H; W/3 соответственно, где

l — характерная длина, uH — характерная скорость.
Пусть полимерная жидкость течет в канале, поперечное сечение которого Ω в плоскости (y, z) ограничено

двумя софокусными эллипсами. Малые полуоси внешнего и внутреннего эллипсов есть r1 < 1 и r0 < r1, большая
полуось внешнего эллипса равна 1, фокусы эллипсов имеют координаты (±δ, 0), δ < 1 (речь идет о безразмер-
ных величинах), фиг. 1. В канале вдоль оси x действует перепад давления △P(t). Будем искать частное решение
исходной системы (1)–(4) следующего вида:

u2 = u3 ≡ 0, u1 = u(t, y, z),
P = 𝒫(t, y, z) − A(t)x, Y = Y(t, y, z),
ai j = ai j(t, y, z), i, j = 1, 2, 3.

(5)

Величина A(t) =
△P(t)
ρu2

Hh
есть безразмерный перепад давления на отрезке длины h оси x. Следуя [12], для такой

постановки получаем Φ = uya12 + uza13.
Обозначим

αi j =
ai j

Re
, i, j = 1, 3, αi = αii + æ2, æ2 =

1
WRe

,

KI = Re

(︂
æ2 +

k
3

I
)︂
, I = α11 + α22 + α33, ̃︀KI = KI + βReI.
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x

(а) (б)

y

h(hl )

z

y

g

–1(l) 1( l)

–r1(–r1l)

r1(r1l)

r0(r0l)

u = 0

u = 0

ζ = Z1

ζ = Z0

g
z

Ω

Ω

δu R0 R1
A (t)

Фиг. 1. Канал с сечением эллиптической формы (а), область сечения между конфокальными эллипсами (б).

Тогда с учетом (5) систему (2), (3) запишем в виде двух систем:

ut − (Yα12)y − (Yα13)z = A(t) +Ga(Y − 1) − Fr−2,

(α12)t − α2uy − α23uz +
(︀ ̃︀KIα12 + βRe(α13α23 − α12α33)

)︀
/τ0 = 0,

(α13)t − α23uy − α3uz +
(︀ ̃︀KIα13 + βRe(α12α23 − α13α22)

)︀
/τ0 = 0,

(6)

(α11)t − 2(α12uy + α13uz) +
(︀
KIα11 + βRe(α2

11 + α
2
12 + α

2
13)

)︀
/τ0 = 0,

(α22)t +
(︀ ̃︀KIα22 + βRe(α2

12 − α11α22 + α
2
23 − α22α33)

)︀
/τ0 = 0,

(α33)t +
(︀ ̃︀KIα33 + βRe(α2

13 − α11α33 + α
2
23 − α22α33)

)︀
/τ0 = 0,

(α23)t +
(︀ ̃︀KIα23 + βRe(α12α13 − α11α23)

)︀
/τ0 = 0.

(7)

Для определения производных давления получим следующие выражения:

𝒫y = (Yα22)y + (Yα23)z, 𝒫z = (Yα23)y + (Yα33)z.

Для определения температуры имеем уравнение

dY
dt
=

1
Pr

(︂
∂2Y
∂y2 +

∂2Y
∂z2 +CdY(uya12 + uza13)

)︂
. (8)

Умножим второе и третье уравнения (6) на Y, добавим и вычтем из второго уравнения выражение Ytα12, а из
третьего уравнения Ytα13. Выражения, полученные таким образом, продифференцируем по y и по z, соответ-
ственно, и сложим с производной первого уравнения (6) по t. В результате придем к квазилинейному уравне-
нию 2-го порядка для функции u(t, y, z):

utt − Ỹ︀△u − ̃︀Auy − ̃︀Buz +
(︀ ̃︀KI/τ0

)︀[︀
ut − A(t) −Ga(Y − 1) + Fr−2]︀ + F = A′(t) +GaYt, (9)

где ̃︀△u = α2uyy + 2α23uyz + α3uzz,̃︀A = ̃︀A(t, y, z) = (Yα2)y + (Yα23)z, ̃︀B = ̃︀B(t, y, z) = (Yα23)y + (Yα3)z,

F = F(t, y, z) = Y
[︂
α12

(︂ ̃︀KI

τ0

)︂
y
+ α13

(︂ ̃︀KI

τ0

)︂
z

]︂
+ βRe

[︂(︂
Yl33

τ0

)︂
y
+

(︂
Yl22

τ0

)︂
z

]︂
− (Ytα12)y − (Ytα13)z,

l22 = α12α23 − α13α22, l33 = α13α23 − α12α33.

Замечание 1. При выводе уравнения (9) использовано соотношение

(Yα12)y + (Yα13)z = ut − A(t) −Ga(Y − 1) + Fr−2,

полученное из первого уравнения системы (6).
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Далее исследовано течение полимерной жидкости в канале с сечением Ω, лежащим между двумя софокус-
ными эллипсами с фокусным расстоянием 2δ. Большая полуось внешнего эллипса имеет длину 1, малые по-
луоси внешнего и внутреннего эллипсов имеют длины r1 < 1 и r0 < r1 соответственно (см. фиг. 1). Ввиду того,
что границы области имеют форму эллипсов, для разработки численного алгоритма имеет смысл перейти к
эллиптической системе координат (ζ, γ). В ней область решения можно представить в виде прямоугольника
Ω = {(ζ, γ) : Z0 ≤ ζ ≤ Z1, 0 ≤ γ < 2π}, горизонтальные границы которого ζ = Z0 и ζ = Z1 являются образами
внутренней и внешней стенок канала. Переход из декартовой системы координат (y, z) в эллиптическую систе-
му (ζ, γ) задается конформным отображением

y = δ cosh ζ sin γ, z = δ sinh ζ cos γ, (10)

где δ =
√︀

1 − r2
1, 0 ≤ ζ < ∞, 0 ≤ γ < 2π. В силу (10) имеем

yζ = −zγ = δ sinh ζ sin γ, zζ = yγ = δ cosh ζ cos γ,
yζζ = −yγγ = y, yζγ = z.

(11)

Далее выразим производные от функции u(y, z) по переменным y, z через производные по переменным ζ, γ:

uy = Ruζ + Quγ, uz = Quζ − Ruγ. (12)

Здесь

R =
yζ

y2
ζ
+ y2

γ

=
δ sinh ζ sin γ

g2 , Q =
yγ

y2
ζ
+ y2

γ

=
δ cosh ζ cos γ

g2 , g2 = δ2(sinh2
ζ + cos2

γ).

Аналогично выражаются производные от функций αi j(y, z), i, j = 1, 2, 3, и Y(y, z).
С учетом (12) последовательно находим

uyy = R2uζζ + 2RQuζγ + Q2uγγ + (RRζ + QRγ)uζ + (RQζ + QQγ)uγ,

uzz = Q2uζζ − 2RQuζγ + R2uγγ + (QQζ − RQγ)uζ + (RRγ − QRζ)uγ,
(13)

при этом

Rζ = Qγ =
δ2y(cos2 γ − sinh2

ζ)
g4 , Rγ = −Qζ =

δ2z(cosh2
ζ + sin2

γ)
g4 .

Аналогично находим

uyz = RQuζζ + (Q2 − R2)uζγ − RQuγγ + (RQζ + QQγ)uζ − (RRζ + QRγ)uγ. (14)

Выражая в (6)–(9) производные по переменным y, z через производные по переменным ζ, γ в соответствии
с (12)–(14), получаем разрешающую систему уравнений в эллиптической системе координат, неизвестные
функции u(ζ, γ), αi j(ζ, γ) и Y(ζ, γ) в этих уравнениях являются достаточно гладкими 2π-периодическими по ко-
ординате γ функциями. Дополним эти уравнения граничными условиями: условиями прилипания жидкости
для скорости и значениями температур стенок канала:

u(t,Z1, γ) = 0 при t > 0, где Z1 =
1
2

ln
(︂

1 + r1

1 − r1

)︂
, (15)

u(t,Z0, γ) = 0 при t > 0, где Z0 = ln
(︂

r0 +
√︀

1 + r2
0 − r2

1√︀
1 − r2

1

)︂
, (16)

Y(t,Z0, γ) = Y0(t, γ), Y(t,Z1, γ) = Y1(t, γ) при t > 0, (17)

где ζ = Z0,1 – уравнения внутренней и внешней границ канала в эллиптической системе координат, Y0,1(γ) –
распределения температуры на стенках канала.

Начальные данные сформулируем в предположении, что при t = 0 жидкость в канале покоится, и ее темпе-
ратура находится в равновесии с внешней средой:

αi j(0, ζ, γ) = 0, u(0, ζ, γ) = 0, ut(0, ζ, γ) = 0, Y(0, ζ, γ) = 1 (18)

для всех точек ζ, γ из Ω.
Исследуем влияние импульсов градиента давления A(t) и резких изменений температуры внутренней стенки

канала Y0(t, γ) на картину течения и на реализуемость установившихся режимов течения типа Пуазейля после
воздействия таких импульсов.
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3. ОПИСАНИЕ ВЫЧИСЛИТЕЛЬНОГО АЛГОРИТМА

Для реализации расчетов введем сетку по времени с шагом τ и узлами tn = nτ, n = 0, 1, 2, . . .. Обозначим
un = un(ζ, γ) = u(tn, ζ, γ), αn

i j = αn
i j(ζ, γ) = αi j(tn, ζ, γ), Yn = Yn(ζ, γ) = Y(tn, ζ, γ) и аппроксимируем в уравнени-

ях (6)–(9) производные по времени в точке t = tn+1 односторонними разностными производными (производ-
ными Гира) вида

un+1
tt = utt

⃒⃒
t=tn+1

≈
2un+1 − 5un + 4un−1 − un−2

τ2 , un+1
t = ut

⃒⃒
t=tn+1

≈
3un+1 − 4un + un−1

2τ
, (19)

n = 2, 3, . . ..

3.1. Линеаризация уравнений модели

Для реализации вычислений после перехода в эллиптическую систему координат в уравнениях (6)–(9) необ-
ходимо выполнить линеаризацию и на каждом шаге по времени осуществлять итерации по нелинейности (их
описание приведено ниже). Запишем линеаризованные по Ньютону уравнения для функций αi j в виде

(α11)n+1
t = −

Re
τn

0

[︂(︂
k
3
+ 2β

)︂
α

n
11 +

k
3

In + æ2
]︂
α

n+1
11 +

Rek
3τn

0
(αn

11)2+

+ 2(αn
12R + αn

13Q)un
ζ + 2(αn

12Q − αn
13R)un

γ −
βRe
τn

0

[︀
(αn

12)2 + (αn
13)2 − (αn

11)2]︀,
(α22)n+1

t = −
1
τn

0

[︂
Kn

I + Re

(︂
k
3
+ 2β

)︂
α

n
22

]︂
α

n+1
22 +

Re
τn

0

(︂
k
3

(αn
22)2 + β

[︀
(αn

22)2 − (αn
12)2 − (αn

23)2]︀)︂,
(α33)n+1

t = −
1
τn

0

[︂
Kn

I + Re

(︂
k
3
+ 2β

)︂
α

n
33

]︂
α

n+1
33 +

Re
τn

0

(︂
k
3

(αn
33)2 + β

[︀
(αn

33)2 − (αn
13)2 − (αn

23)2]︀)︂,
(α12)n+1

t =
βReαn

33 −
̃︀Kn

I

τn
0

α
n+1
12 + (αn

2R + αn
23Q)un

ζ + (αn
2Q − αn

23R)un
γ −

βRe
τn

0
α

n
13α

n
23,

(α13)n+1
t =

βReαn
22 −

̃︀Kn
I

τn
0

α
n+1
13 + (αn

23R + αn
3Q)un

ζ + (αn
23Q − αn

3R)un
γ −

βRe
τn

0
α

n
12α

n
23,

(α23)n+1
t =

βReαn
11 −

̃︀Kn
I

τn
0

α
n+1
23 −

βRe
τn

0
α

n
12α

n
13,

(20)

где

In = an
11 + an

22 + an
33, Kn

I = Re

(︂
æ2 +

k
3

In
)︂
, ̃︀Kn

I = Kn
I + βReIn, α

n
i = α

n
ii + æ2, i = 2, 3, τ

n
0 = J(Yn)/Yn, un

ζ, un
γ

есть производные функции u(t, ζ, γ) при t = tn.
Для поиска функции un+1(ζ, γ) после перехода в (9) в эллиптическую систему координат запишем линеари-

зованное уравнение вида

2
τ2 un+1 − cæ2(un+1

ζζ + un+1
γγ ) = Fn

u +
̃︀Kn

I

τn
0

(︂
4un−1 − un−2

2τ

)︂
+

5un − 4un−1 + un−2

τ2 , (21)

где
Fn

u = Yn[︀𝒞1un
ζζ + 2𝒞2un

ζγ + 𝒞3un
γγ + 𝒞4un

ζ + 𝒞5un
γ

]︀
+ 𝒞6Yn

ζun
ζ + 𝒞7Yn

γun
γ + 𝒞2(Yn

ζun
γ + Yn

γun
ζ)+

+
̃︀Kn

I

τn
0

[︀
A(tn) +Ga(Yn − 1) − Fr−2

− 3un/(2τ)
]︀
− Fn + A′(tn) +GaYn

t ,

𝒞1 = R2
α

n
22 + Q2

α
n
33 + 2RQαn

23 + (æ/g)2 − cæ2/Yn,

𝒞2 = RQ(αn
22 − α

n
33) + (Q2 − R2)αn

23,

𝒞3 = Q2
α

n
22 + R2

α
n
33 − 2RQαn

23 + (æ/g)2 − cæ2/Yn,

𝒞4 = (RRζ + QRγ)αn
2 + (QQζ − RQγ)αn

3 + 2(RQζ + QQγ)αn
23 + RΨ(αn

2,α
n
23) + QΨ(αn

23,α
n
3),

𝒞5 = (RQζ + QQγ)αn
2 + (RRγ − QRζ)αn

3 − 2(RRζ + QRγ)αn
23 + QΨ(αn

2,α
n
23) − RΨ(αn

23,α
n
3),
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Ψ(a, b) = Raζ + Qaγ + Qbζ − Rbγ,

𝒞6 = R2
α

n
2 + 2RQαn

23 + Q2
α

n
3,

𝒞7 = Q2
α

n
2 − 2RQαn

23 + R2
α

n
3,

Fn = Yn
[︂

(Rαn
12 + Qαn

13)
(︂ ̃︀Kn

I

τn
0

)︂
ζ

+ (Qαn
12 − Rαn

13)
(︂ ̃︀Kn

I

τn
0

)︂
γ

]︂
+ Rφζ + Qφγ − Rψγ + Qψζ,

φ = φ(ζ, γ) =
Ynln33

τn
0
− Yn

t α
n
12, ψ = ψ(ζ, γ) =

Ynln22

τn
0
− Yn

t α
n
13,

(ln22)ζ,γ = (αn
12α

n
23−α

n
13α

n
22)ζ,γ, (ln33)ζ,γ = (αn

13α
n
23−α

n
12α

n
33)ζ,γ – производные от функций ln22, ln33; A′(tn) =

dA(t)
dt

⃒⃒
t=tn

, c > 0 –

некоторая постоянная. Выбор достаточно больших величин c обеспечивает сходимость предложенного мето-
да. При записи (21) в предположении, что шаг τ достаточно мал, использованы приближенные соотношения,
полученные при исключении членов высокого порядка малости по отношению к τ:

uyy + uzz|t=tn =
1
g2 (uζζ + uγγ)|t=tn ≈ c(un+1

ζζ + un+1
γγ ) +

(︂
1
g2 − c

)︂
(un
ζζ + un

γγ).

Линеаризованное уравнение для безразмерной температуры имеет вид

PrYn+1
t − c

(︀
Yn+1
ζζ + Yn+1

γγ

)︀
= Fn

Y , (22)

Fn
Y = [1/g2 − c](Yn

ζζ + Yn
γγ) +CdYn[︀(Rαn

12 + Qαn
13)un

ζ + (Qαn
12 − Rαn

13)un
γ

]︀
.

Замечание 2. Разложение выражений, содержащих вторые производные функций u и Y, на слагаемые, вклю-
чающие решения с (n+1)-й и n-й итераций, выполненное при записи (21), (22), связано с тем, что далее для по-
иска численного решения на каждом шаге по времени планируется реализовать итерационную схему по нели-
нейности в комбинации с быстрым алгоритмом из [24,25], основанным на прямых произведениях одномерных
интерполяций и решении матричных уравнений Сильвестра. Для применения этого алгоритма требуется, что-
бы коэффициенты, стоящие при производных неизвестных функций в левых частях, были постоянными.

3.2. Аппроксимация неизвестных функций и их производных

На каждом шаге описанной схемы по времени будем искать решения уравнений (20)–(22) с граничными
условиями и начальными данными (15)–(18) в классе достаточно гладких в области Ω 2π-периодических по
переменной γфункций. Далее для записи вычислительной схемы необходимо аппроксимировать в уравнениях
(20)–(22) функции αn

i j(ζ, γ), un(ζ, γ) и Yn(ζ, γ) и их производные по переменным ζ и γ. В качестве способа аппрок-
симации по переменной ζ используем барицентрические дробно-рациональные интерполяции [15,16,26], а по
переменной γ – тригонометрические полиномы с ядром Дирихле. Для приближения функций αn

i j(ζ, γ), un(ζ, γ)
и Yn(ζ, γ) применим прямые (тензорные) произведения указанных одномерных интерполяций.

В области Ω = {(ζ, γ) : Z0 ≤ ζ ≤ Z1, 0 ≤ γ < 2π} введем сетку с узлами (ζk, γm), где ζk = ℒ ∘ g(ξk),

ξk = cos
(2k − 1)π

2K
– нули полинома Чебышёва степени K, ζ̂ = g(ξ) – конформное отображение, переводящее от-

резок [−1, 1] в себя,ℒ(ζ̂) = [(Z1−Z0)ζ̂+Z1+Z0]/2 – линейное отображение отрезка [−1, 1] в [Z0,Z1]; γm =
2π(m − 1)

2M − 1
,

k = 1,K, m = 1,ℳ,ℳ = 2M − 1. Пусть ζ̂k = g(ξk), тогда ζk = ℒ(ζ̂k). Будем полагать (см. введение), что аналитиче-
ские продолжения неизвестных функций по переменной ζ имеют особые точки, лежащие на действительной
прямой вне отрезка [Z0,Z1] близко к его границам. Тогда, следуя оценкам погрешности из [15], отображение g(ξ)
следует выбирать таким образом, чтобы обратное отображение g−1(ζ̂) переносило эти особые точки на доста-
точно большое расстояние от отрезка [−1, 1]. В качестве такого отображения в этой работе используем функцию
с параметром b, предложенную в [27, 28]:

g(ξ) = arctan(bξ)/ arctan(b), b > 0. (23)

Несложно проверить, что если образы особых точек αn
i j, un, Yn как функций переменной ζ под действием отоб-

ражения ℒ−1 лежат на отрезке [−1 + ε̃, 1 + ε̃], то, задав b = tan
π

2(1 + ε̃)
, получим отображение с требуемыми

свойствами.
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Пусть (αn
i j)km = α

n
i j(ζk, γm), un

km = un(ζk, γm), Yn
km = Yn(ζk, γm). Построим приближения

α
n
i j(ζ, γ) ≈ P(αn

i j, ζ, γ) =
K∑︁

k=1

ℳ∑︁
m=1

lkK(ζ̂)DmM(γ)(αn
i j)km, (24)

un(ζ, γ) ≈ Pb(un, ζ, γ) =
K∑︁

k=1

ℳ∑︁
m=1

lbkK(ζ̂)DmM(γ)un
km, Yn(ζ, γ) ≈ Pb(Yn, ζ, γ) + Vn(ζ, γ), (25)

где

lkK(ζ̂) = Jk(ζ̂)/DK(ζ̂), Jk(ζ̂) =
ωk

ζ̂ − ζ̂k
, DK(ζ̂) =

K∑︁
k=1

Jk(ζ̂),

ωk = (−1)k−1 sin
2k − 1

2K
π – веса барицентрической интерполяции с узлами ζ̂k, см. [29];

DmM(γ) =
2

2M − 1
sin[(M − 0.5)(γ − γm)]

2 sin((γ − γm)/2)
; lbkK(ζ̂) =

1 − ζ̂2

1 − ζ̂2
k

lkK(ζ̂), k = 1, . . . ,K.

Функции lkK, lbkK, DmM удовлетворяют свойствам фундаментальных многочленов интерполяции (lkK(ζ̂l) = δkl,
lbkK(ζ̂l) = δkl, DmM(γq) = δmq, где δmq – символ Кронекера), при этом lkK, lbkK являются дробно-рациональными
функциями, DmM – тригонометрическим многочленом; DmM(γ) = 2

2M−1 DM(γ − γm), DM – ядро Дирихле; появ-

ление в приближениях (25) функции lbkK(ζ̂) вместо функции lkK(ζ̂) обеспечивает автоматическое выполнение
граничных условий (15), (16), см. также [30], гл. 9, § 5. Для выполнения условий (17) в приближении функции
Yn(ζ, γ) присутствует линейная по ζ функция Vn(ζ, γ) = [(Y1(tn, γ) − Y0(tn, γ))ζ + Y0(tn, γ)Z1 − Y1(tn, γ)Z0]/(Z1 − Z0),
удовлетворяющая условиям: Vn(Z0, γ) = Y0(tn, γ), Vn(Z1, γ) = Y1(tn, γ). Далее будем полагать Y0 и Y1 независящими
от γ и для краткости опустим слагаемое «Vn(ζ, γ)» в формуле (25).

Для аппроксимации уравнений (20)–(22) далее будет использован метод коллокаций с узлами (ζk, γm), по-
этому нам потребуются значения производных дробно-рациональных интерполяций (24), (25) в этих узлах.
Дифференцируя функцию P(αn

i j, ζ, γ) по ζ, переходя к пределу при ζ → ζl, γ → γq, l = 1,K, q = 1,ℳ, используя

свойство фундаментальных многочленов: lkK(ζ̂l) = δkl, DmM(γq) = δmq и правило Лопиталя, находим

∂αn
i j

∂ζ
(ζl, γq) ≈ lim

(ζ,γ)→(ζl,γq)

∂P(αn
i j, ζ, γ)
∂ζ

=

K∑︁
k=1,k ̸=l

ξlk(αi j)n
kq + νl(αi j)n

lq,

где
ξlk =

ωk

ωl(ζ̂l − ζ̂k)
, νl = −

K∑︁
s=1,s̸=l

ξls, l, k = 1,K, l ̸= k.

Дифференцируя функцию Pb(un, ζ, γ) по ζ один и два раза, получаем

∂un

∂ζ
(ζl, γq) ≈

K∑︁
k=1,k ̸=l

ηlkun
kq + µlun

lq,
∂2un

∂ζ2 (ζl, γq) ≈
K∑︁

k=1,k ̸=l

χlkun
kq + κlun

lq,

где

ηlk =
1 − ζ̂2

l

1 − ζ̂2
k

ξlk, µl = −
2ζ̂l

1 − ζ̂2
l

−

K∑︁
s=1,s ̸=l

ξls;

χlk =
−2ξlk

1 − ζ̂2
k

(︀
2ζ̂l + (1 − ζ̂2

l )γ̃lk
)︀
, κl = −

2
1 − ζ̂2

l

+
4ζ̂l

1 − ζ̂2
l

K∑︁
s=1,s ̸=l

ξls(1 + 2γ̃ls), γ̃ls =

K∑︁
r=1,r ̸=l

ξlr +
1

ζ̂l − ζ̂s
.

Дифференцируя функции P(αn
i j, ζ, γ) и Pb(un, ζ, γ) по γ, находим

∂αn
i j

∂γ
(ζl, γq) ≈

ℳ∑︁
m=1,m̸=q

ξ̃qm(αi j)n
lm + ν̃q(αi j)n

lq,

∂un

∂γ
(ζl, γq) ≈

ℳ∑︁
m=1,m̸=q

ξ̃qmun
lm + ν̃qun

lq,
∂2un

∂γ2 (ζl, γq) ≈
ℳ∑︁

m=1,m̸=q

χ̃qmun
lm + κ̃qun

lq,
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где

ξ̃qm =
(−1)q−m

2

(︂
sin

π(q − m)
ℳ

)︂−1

, ν̃q = 0, m, q = 1,ℳ, q ̸= m;

χ̃qm =
(−1)q−m+1

2
cos

π(q − m)
ℳ

(︂
sin

π(q − m)
ℳ

)︂−2

, κ̃q ≡ −
M(M − 1)

3
.

Пусть

Λn
i j, (Λn

i j)ζ – матрицы размера K ×ℳ с элементами αn
i j(ζk, γm) и

∂αn
i j

∂ζ
(ζk, γm);

Un, Un
ζ
, Un

ζζ
– матрицы размера K ×ℳ с элементами un(ζk, γm),

∂un

∂ζ
(ζk, γm),

∂2un

∂ζ2 (ζk, γm);

Υn, Υn
ζ
, Υn

ζζ
– матрицы размера K ×ℳ с элементами Yn(ζk, γm),

∂Yn

∂ζ
(ζk, γm),

∂2Yn

∂ζ2 (ζk, γm).

Сформируем матрицы размера K × K

A1 =

⎛⎜⎜⎜⎝
ν1 ξ12 . . . ξ1K

ξ21 ν2 . . . ξ2K
...

... . . .
...

ξK1 ξK2 . . . νK

⎞⎟⎟⎟⎠ , 𝒜1 =

⎛⎜⎜⎜⎝
µ1 η12 . . . η1K

η21 µ2 . . . η2K
...

... . . .
...

ηK1 ηK2 . . . µK

⎞⎟⎟⎟⎠ , 𝒜2 =

⎛⎜⎜⎜⎝
κ1 χ12 . . . χ1K

χ21 κ2 . . . χ2K
...

... . . .
...

χK1 χK2 . . . κK

⎞⎟⎟⎟⎠ .
Для аппроксимации производных по ζ в уравнениях (20)–(22) имеем формулы

(Λn
i j)ζ ≈ A1Λ

n
i j, Un

ζ ≈ 𝒜1Un, Un
ζζ ≈ 𝒜2Un. (26)

Сформируем матрицы размераℳ×ℳ

B1 =

⎛⎜⎜⎜⎝
ν̃1 ξ̃12 . . . ξ̃1ℳ

ξ̃21 ν̃2 . . . ξ̃2ℳ
...

... . . .
...

ξ̃ℳ1 ξ̃ℳ2 . . . ν̃ℳ

⎞⎟⎟⎟⎠ , ℬ2 =

⎛⎜⎜⎜⎝
κ̃1 χ̃12 . . . χ̃1ℳ
χ̃21 κ̃2 . . . χ̃2ℳ

...
... . . .

...
χ̃ℳ1 χ̃ℳ2 . . . κ̃ℳ

⎞⎟⎟⎟⎠ .
Для аппроксимации производных по γ в уравнениях (20)–(22) имеем формулы

(Λn
i j)γ ≈ Λ

n
i jB

T
1 , Un

γ ≈ UnBT
1 , Un

γγ ≈ UnℬT
2 , (Λn

i j)ζγ ≈ A1Λ
n
i jB

T
1 , Un

ζγ ≈ 𝒜1UnBT
1 . (27)

Здесь матрицы размера K × ℳ (Λn
i j)γ, Un

γ , Un
γγ, (Λn

i j)ζγ, Un
ζγ

определяются по аналогии с определением матриц
(Λn

i j)ζ, Un
ζ
. Приближения производных функции Yn(ζ, γ), включающие выражения для матрицΥn,Υn

ζ
,Υn

ζζ
,Υn

γ Υ
n
γγ

и Υn
ζγ

, строятся полностью аналогично приближениям производных функции un(ζ, γ).
Далее для построения алгоритмов воспользуемся спектральным разложением матриц𝒜2, ℬ2, аппроксими-

рующих вторые производные:
𝒜2 = R𝒜D𝒜R−1

𝒜 , ℬ2 = RℬDℬR−1
ℬ , (28)

где R𝒜, Rℬ – матрицы собственных векторов𝒜2 и ℬ2; D𝒜, Dℬ – диагональные матрицы собственных значений
𝒜2 и ℬ2 – dk

𝒜, dm
ℬ, k = 1,K, m = 1,ℳ.

Замечание 3. Используя выражения для величин χ̃qm, нетрудно видеть, что матрица ℬ2 является симмет-
ричной, следовательно матрица Rℬ является ортогональной R−1

ℬ = RT
ℬ. Строго говоря, при наличии у матрицы

𝒜2 комплексно-сопряженных собственных чисел, матрица D𝒜 является блочно-диагональной, содержащей на
диагонали блоки размера 2 × 2. Однако, как показали численные эксперименты, выбранный базис исключает
такую возможность. Важным обстоятельством является также медленный рост числа обусловленности матри-
цы R𝒜 с ростом K, обеспечивающий устойчивость алгоритма к погрешностям округления (см. [24]).

Замечание 4. Подчеркнем, что описанное выше приближение (24) функций αn
i j(ζ, γ) отличается от прибли-

жений (25) функций un(ζ, γ) и Yn(ζ, γ) тем, что последние по построению удовлетворяют заданным граничным
условиям. Это обстоятельство приводит к тому, что матрица A1, аппроксимирующая оператор дифференциро-
вания по переменной ζ для функций αn

i j, отличается от соответствующей матрицы𝒜1 для функций un и Yn.
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3.3. Решение задачи линейной алгебры

Для поиска численных решений уравнений (20)–(22) воспользуемся приближениями, описанными в
разд. 3.2 и методом коллокаций с узлами (ζk, γm) в области Ω, k = 1,K, m = 1,ℳ. В результате получатся ли-
нейные матричные уравнения для выражения матриц Λn+1

i j , Un+1, Υn+1 через матрицы Λνi j, Uν, Υν, ν = n, n − 1,
n − 2. Однако в силу нелинейности и связности уравнений исходной дифференциальной задачи решение этих
матричных уравнений итерациями по времени приводит к достаточно быстрому росту погрешности и расходи-
мости алгоритма. Эта проблема становится особенно критичной при моделировании импульсных воздействий
на жидкость с резким изменением градиента давления в канале и температуры нагревательного элемента. Ре-
шением такой проблемы является применение на каждом временном шаге итераций по нелинейности. При
этом момент времени t = tn+1 и значения решения в предыдущие моменты времени t = tn, tn−1, . . . фиксируются,
а решения в текущий момент времени насчитываются во вложенном цикле. Пусть s – номер шаг этого цикла.
Для решений на шаге s введем обозначения ̂︀Λs

i j = Λ
n+1,s
i j , ̂︀U s = Un+1,s, ̂︀Υs = Υn+1,s. Решения ̂︀Λs

i j, ̂︀U s, ̂︀Υs выражаются

через ̂︀Λs−1
i j , ̂︀U s−1, ̂︀Υs−1 в соответствии с формулами (30)–(32) и начальными условиями Λn+1,0

i j = Λn
i j, Un+1,0 = Un,

Υn+1,0 = Υn. Итерации по нелинейности останавливаются при выполнении условий

‖̂︀Λs
i j −

̂︀Λs−1
i j ‖

‖̂︀Λs
i j‖

≤ εNI ,
‖ ̂︀U s − ̂︀U s−1‖

‖ ̂︀U s‖
≤ εNI ,

‖̂︀Υs − ̂︀Υs−1‖

‖̂︀Υs‖
≤ εNI , i, j = 1, 2, 3, (29)

либо по прошествии Nmax
it итераций, где значения Nmax

it приведены в табл. 1. В случае остановки номер s обо-
значим σ и положим Λn+2

i j =
̂︀Λσi j, Un+2 = ̂︀Uσ, Υn+2 = ̂︀Υσ. Здесь и далее норма обозначает максимальный элемент

матрицы. В наших расчетах задано εNI = 10−8. При переходе на следующий шаг по времени меняются значения
функций A(tn+1), A′(tn+1), стоящих в правой части (21) и описывающих зависимость градиента давления в канале
от времени, либо изменяются значения функции Y0(tn+1, γ) в граничных условиях (17).

Запишем для примера уравнение итерационного метода для выражения ̂︀Λs+1
11 (см. первое уравнение в систе-

ме (20)):

M11 · ̂︀Λs+1
11 =

{︂
3
2τ
+ Re

[︂(︂
k
3
+ 2β

)︂̂︀Λs
11 +

k
3
(︀̂︀Λs

11 +
̂︀Λs

22 +
̂︀Λs

3

)︀
+ æ2EI

]︂ ⧸︀
T

s
0

}︂
· ̂︀Λs+1

11 =

=
4Λn

11 − Λ
n−1
11

2τ
+ 2

(︀̂︀Λs
12 · ℛ +

̂︀Λs
13 · 𝒬

)︀
· (𝒜1 ̂︀U s) + 2

(︀̂︀Λs
12 · 𝒬 −

̂︀Λs
13 · ℛ

)︀
· ( ̂︀U sBT

1 )+

+
Rek

3
(̂︀Λs

11 ·
̂︀Λs

11)
⧸︀
T

s
0 − βRe

(︀̂︀Λs
12 ·

̂︀Λs
12 +

̂︀Λs
13 ·

̂︀Λs
13 −

̂︀Λs
11 ·

̂︀Λs
11

)︀ ⧸︀
T

s
0.

(30)

Здесь точка (знак умножения) и косая черта означают поэлементное произведение и деление матриц, EI – мат-
рица размера K ×ℳ, все элементы которой равны единице, ℛ,𝒬– матрицы размера K ×ℳ, содержащие значе-
ния функций R(ζ, γ), Q(ζ, γ) в узлах ζk, γm соответственно, T

s
0 – матрица размера K ×ℳ со значениями функции

J(Y(tn+1, ζ, γ))/Y(tn+1, ζ, γ), насчитанными на шаге s в тех же узлах. Аппроксимации остальных пяти уравнений
из системы (20) записываются аналогично.

Аппроксимации уравнений (21), (22) выглядят следующим образом:

2
τ2

̂︀U s+1 − æ2c(𝒜2 ̂︀U s+1 + ̂︀U s+1ℬT
2 ) = ̂︀ℱ s

U +
̂︀𝒦 s

I

T
s
0

(︂
4Un − Un−1

2τ

)︂
+

5Un − 4Un−1 + Un−2

τ2 , (31)

Таблица 1. Параметры численного метода

Параметр Описание Интервал значений

K,ℳ Число узлов сетки вдоль осей ζ и γ 15–41

τ Шаг сетки по времени 10−4–0.05

εS Погрешность стабилизации течения, см. (37) 10−3

εNI Погрешность итераций по нелинейности 10−8

Nmax
it Максимальное количество итераций по нелинейности 103–104

c Параметр линеаризации уравнений (21), (22) 80–120

b Параметр сгущения для адаптации сетки (23) 1.6
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3Pr
2τ

̂︀Υs+1 − c(𝒜2̂︀Υs+1 + ̂︀Υs+1ℬT
2 ) = ̂︀ℱ s

Y + Pr
4Υn − Υn−1

2τ
, (32)

где ̂︀𝒦 s
I , ̂︀ℱ s

U , ̂︀ℱ s
Y – матрицы значений функции ̃︀Kn+1

I и функций Fn+1
u , Fn+1

Y , стоящих в правых частях уравнений
(21), (22), насчитанные на итерации по нелинейности с номером s в момент времени t = tn+1. Отметим, что
для расчета производных, стоящих в правых частях, применяются формулы вида (26), (27), а для выполнения
любых других действий реализуются соответствующие поэлементные операции с матрицами.

Для решения матричного уравнения (30) на каждом шаге s необходимо выполнять деления элементов мат-
рицы в правой части на элементы матрицы M11. Аналогичные действия выполняются для поиска приближен-
ных значений всех функций αn+1

i j на шаге s + 1 в узлах коллокации.
Для решения (31) используем спектральные разложения (28) матриц 𝒜2, ℬ2, стоящих в левой части (31).

Умножим (31) на матрицу R−1
𝒜 слева и на матрицу R−1

ℬ справа, обозначим pτ = 2/τ2, ̂︀V s+1 = R−1
𝒜

̂︀U s+1R−1
ℬ ,

̂︀𝒢s = R−1
𝒜

[︂ ̂︀ℱ s
U +

̂︀𝒦 s
I

T
s
0

(︂
4Un − Un−1

2τ

)︂
+

5Un − 4Un−1 + Un−2

τ2

]︂
R−1
ℬ

и получим матричное уравнение
pτ̂︀V s+1 − cæ2(D𝒜̂︀V s+1 + ̂︀V s+1Dℬ) = ̂︀𝒢s,

решение которого относительно элементов vs+1
km матрицы ̂︀V s+1 дается формулами

vs+1
km =

gs
km

pτ − cæ2(dk
𝒜 + dm

ℬ)
, k = 1,K, m = 1,ℳ,

где gs
km – элементы матрицы ̂︀𝒢s. Шаг сетки по времени τ нужно выбирать, исходя из условия pτ ̸= cæ2(dk

𝒜 + dm
ℬ),

т. е. τ ̸=
√

2/(æ
√︁

c(dk
𝒜 + dm

ℬ)), ∀k,m. Зная элементы матрицы ̂︀V s+1, несложно восстановить значения решения в

узлах коллокации: ̂︀U s+1 = R𝒜̂︀V s+1Rℬ.
Аналогичная схема реализуется для поиска ̂︀Υs+1. Решив последовательно уравнения для ̂︀Λs+1

i j , ̂︀U s+1, ̂︀Υs+1,
переходим на новую итерацию s + 2 и так далее, пока не выполнятся условия (29). После этого переходим к
следующему шагу по времени и снова начинаем цикл итераций по нелинейности. В итоге, при условии сходи-
мости итераций, можем рассчитать значения решения на любом промежутке времени t ∈ [0, tend]. Комментарии
о высокой эффективности описанной схемы решения матричных уравнений на каждом шаге s с точки зрения
затрат памяти и числа операций даны в разд. 4.3 работы [13].

4. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Для моделирования течения полимерной жидкости в канале 3D принтера под действием импульсов гради-
ента давления и температуры нагревательного элемента зададим параметры, соответствующие геометрическим
и механическим характеристикам технологии термоструйной печати с применением раствора электропрово-
дящего полимера PEDOT:PSS. Воспользуемся данными, найденными в открытой печати и представленными в
приложении статьи [12] со ссылками на литературу. Перечень параметров модели приведен в табл. 2, а соответ-
ствующие значения безразмерных факторов модели указаны в (33). Отметим, что используя данные из табл. 2,
решения, найденные в безразмерной форме в результате вычислений, можно преобразовать к размерному виду.

Отметим, что для расчета D̂ полагалось, что длина дюзы в 100 раз больше размера сечения l: h = 100. В рамках
рассматриваемой постановки

Re = 10, W = 0.1, Ra = 1.06, Pr = 101.8, Ga = Ra/Pr, Fr = 31.9. (33)

Замечание 5. Отметим, что организация механических испытаний для определения значений некоторых
реологических параметров полимерной жидкости представляет проблему. В частности, для определения вре-
мени релаксации можно использовать различные подходы, которые могут приводить к различным результатам.
По этой причине значения, приведенные в табл. 2, дают лишь приближенное описание реальных реологиче-
ских свойств раствора PEDOT:PSS. В связи с этим интересной задачей для будущих исследований является
выявление зависимости критических значений параметров, полученных ниже, от величин W, β, Re.

В численных экспериментах будем запускать расчёты начальными данными (18) и плавно повышать гради-
ент давления A(t) = dP(t) при t < t0 по закону

dP(t) = D̂
[︀
1 − exp

(︀
− 8 log 10 (t/t0)2)︀]︀, t < t0. (34)
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Таблица 2. Параметры модели

Параметр Описание Значение

uH Характерная скорость течения 1 м/с

l Характерная длина (размер сечения канала) 10−4 м

R0, R1 Безразмерные значения больших полуосей сечения канала, фиг. 1 R0 = 2
√

0.19, R1 = 1

r0, r1 Безразмерные значения малых полуосей сечения канала, фиг. 1 r0 = 0.1, r1 = 0.5

T0 Характерные значения температуры 293.15 K (20∘ С)

η*0 Начальные значения сдвиговой вязкости раствора PEDOT:PSS 10−2 Па·с

τ*0 Начальные значения времени релаксации раствора PEDOT:PSS 10−5 с

EA Безразмерная энергия активации 6.14

D̂ Базовое значение безразмерного градиента давления A(t), см. (34) −1, −10

Ŷ Базовое значение температуры нагревательного элемента Y0(t, γ), см. (36) 1.2

ρ Плотность жидкости 1000 кг/м3

β, k Феноменологические параметры k = 1.2β, β = 0.1

Cd Коэффициент диссипации 0.5

Множитель “−8 log 10” в аргументе экспоненты обеспечивает близость градиента давления к базовому зна-
чению D̂ в момент времени t = t0: D̂ − A(t0) = 10−8.

При t ≥ t0 смоделируем импульс градиента давления по временной переменной в соответствии с формулой

A(t) = dPI(t) = D̂
[︂

1 + AI exp
(︂
−

(t − tI)2

2∆2
I

)︂]︂
, t ≥ t0, (35)

либо импульсное изменение температуры нагревательного элемента по формуле

Y0(t, γ) = Ŷ
[︂

1 + AY exp
(︂
−(t − tI)2

2∆2
Y

)︂]︂
, t ≥ t0, (36)

где Y0(t, γ) – значения температуры на внутренней границе канала, см. (17), tI > t0 + ∆I, tI > t0 + ∆Y в случае
действия импульсов давления или температуры соответственно.

Все параметры, присутствующие в (34)–(36), описаны в табл. 3. В столбце «Интервал значений» в скобках
указаны размерные величины.

Основные параметры вычислительного процесса и их значения приведены в табл. 1.
Отметим, что во всех проведенных расчетах шаг сетки по времени удовлетворял одному из неравенств

τ < ∆I/10 или τ < ∆Y/10.

Таблица 3. Безразмерные параметры импульсных воздействий на жидкость (34)–(36)

Параметр Описание Интервал значений

t0 Характеризует время выхода градиента давления на базовое значение D̂ 4–10 (0.4–1 мс)

tI Момент времени, когда интенсивность импульса максимальна 8–40 (0.8–4 мс)

AI Амплитуда импульса градиента давления 10–104

AY Амплитуда импульса температуры 0.2–1.3

∆I Характерная продолжительность импульса градиента давления 0.001–10 (10−4–1 мс)

∆Y Характерная продолжительность импульса температуры нагревательно-
го элемента

1–30 (0.1–3 мс)
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В численных экспериментах будем наблюдать поток и среднюю температуру жидкости в дюзе, рассчитанные
по формулам

F =
∫︁
Ω

u(y, z)d|Ω|, T =
1
|Ω|

∫︁
Ω

Y(y, z)d|Ω|,

соответственно, где Ω – сечение канала, |Ω| – его площадь, d|Ω| – элемент площади сечения. Эти значения
получены с применением обобщений формул Clenshaw–Curtis [31] для расчета интеграла по областиΩ = {(ζ, γ) :
Z0 ≤ ζ ≤ Z1, 0 ≤ γ < 2π}, где для вычисления Z0,Z1 использованы формулы (15), (16) и данные из табл. 2. Ниже
F и T приведены в размерном виде.

Одной из целей исследования является анализ условий потери устойчивости течения под действием им-
пульсных нагрузок (35), (36). В расчетах с параметрами, заданными в табл. 2, 3, обнаружилось два режима
течения: режим, в котором наблюдается расходимость численного решения (как правило, связанная с расхо-
димостью итераций по нелинейности) в некоторой окрестности момента времени t = tI и режим, в котором
после действия импульса решение в итерациях сходится и устанавливается по времени, т. е. при некотором
tS = Nτ ≫ tI выполняются условия

‖ΛN
i j − Λ

N−1
i j ‖

τ‖ΛN
i j‖

≤ εS ,
‖UN − UN−1‖

τ‖UN‖
≤ εS ,

‖ΥN − ΥN−1‖

τ‖ΥN‖
≤ εS , i, j = 1, 2, 3, (37)

с малыми значениями εS , указанными в табл. 1.
На фиг. 2–4 приведены результаты расчетов при наличии импульса градиента давления с параметрами

tI = 0.8 мс, ∆I = 0.015 мс, AI = 100, D̂ = −1 при фиксированной температуре нагревательного элемента
Y0(t, γ) ≡ 1.2 (что приблизительно равно 79∘C). Поскольку скорость жидкости противоположно направленна
оси x (такая ситуация реализуется при D̂ < 0), см. фиг. 1а, то значения скорости и потока жидкости, приведен-
ные на графиках, являются отрицательными. Отметим сложную зависимость потока и средней температуры
жидкости от времени. На фиг. 2 видны пики графиков, причем точки максимума пиков лежат правее точки
t = tI, что характеризует запаздывание эффекта от действия импульса, связанное с релаксацией полимерной
жидкости.

Стократное увеличение давления в дюзе (AI = 100) приводит к примерно десятикратному пиковому уве-
личению скорости жидкости, см. фиг. 3, которая затем достаточно быстро уменьшается в окрестности стенок
канала и медленнее в окрестности координатной линии ζ = (Z0 + Z1)/2. Отметим, что скачок температуры на
фиг. 2б связан с диссипацией кинетической энергии жидкости, его величина определяется в основном пара-
метром Cd. При этом динамика распределения температуры в дюзе оказывается весьма сложной, см. фиг. 4.

Фиг. 2. Зависимость потока жидкости в канале (а) и средней температуры жидкости (б) от времени при наличии импульса
градиента давления с параметрами t0 = 0.5 мс, tI = 0.8 мс, ∆I = 0.015 мс (безразмерное значение ∆I = 0.15), AI = 100, D̂ = −1,
τ = 5 × 10−3, K = 31,ℳ = 21. На вставках показана динамика F и T в окрестности момента времени tI, который отмечен
точкой.
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Фиг. 3. Распределение скорости жидкости при наличии импульса градиента давления в разные моменты времени t:
t = t0 = 0.5 мс (а), сразу после импульса t = 0.8318 мс (б), при выходе на стационарный режим t = 1.3 мс (в).
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Фиг. 4. Распределение температуры жидкости при наличии импульса градиента давления в разные моменты времени t.

Подчеркнем, что в этом эксперименте значения температуры на границе канала поддерживаются постоян-
ными. В соответствии с критерием (37) система стабилизируется примерно через 1.5 мс после действия импуль-
са (tS = 2.383, εS = 10−3).

На фиг. 5 изображена динамика средней температуры и потока жидкости в дюзе при импульсном изменении
температуры нагревательного элемента. Отметим, что эта динамика качественно отличается от поведения тех
же величин на фиг. 2. Время установления течения существенно возрастает. При действии импульса величины
|F| и T сначала резко возрастают, затем падают на небольшую величину и выходят на промежуточное «плато»,
затем идет их дальнейшее плавное уменьшение, темп которого существенно зависит от параметра Re.

Результаты, показанные на фиг. 2–5, получены для значений параметров достаточно близких к критиче-
ским, т.е. при небольшом увеличении амплитуд или продолжительностей импульсов приближенное решение
не устанавливается, поскольку итерации по нелинейности перестают сходиться. Важно отметить, что авторами
проведено значительное количество численных экспериментов, из которых следует, что изменение числа узлов
пространственной сетки, шага по времени (и даже замена схемы (19) на известные схемы первого, либо четвер-
того порядков) и других численных параметров практически не влияет на критические значения ∆I, ∆Y , AI, AY .
Таким образом, можно утверждать, что расходимость численного решения связана с отсутствием действитель-
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Фиг. 5. Зависимость средней температуры жидкости в канале (а) и потока жидкости (б) от времени при импульсном изме-
нении температуры нагревательного элемента с параметрами t0 = 0.942 мс, tI = 2 мс, ∆Y = 0.27 мс (безразмерное значение
∆Y = 2.7), AY = 1, D̂ = −10, τ = 2.5 × 10−3, K = 31,ℳ = 21. На вставках показана динамика F и T в окрестности момента
времени tI, который отмечен точкой.

Фиг. 6. Зависимость потока в канале (а) и средней температуры жидкости (б) от времени при импульсном изменении тем-
пературы нагревательного элемента с параметрами t0 = 0.942 мс, tI = 2 мс, ∆Y = 0.3 мс (безразмерное значение ∆Y = 3),
AY = 1, D̂ = −10, τ = 2.5 × 10−3, K = 31,ℳ = 21. Точками отмечены моменты времени t0 и tI .

ных ветвей точных решений исследуемых уравнений. Более строгие рассуждения, проведенные в аналогичном
случае для одномерной задачи и основанные на построении точных решений, приведены в [8].

На фиг. 6 показаны значения F и T в режиме с параметрами близкими к указанным в подписи к фиг. 5, при
увеличении ∆Y до значения 0.3 мс.

В таком случае численное решение расходится при t = 3.44 мс. На фиг. 7, 8 изображены распределения зна-
чений скорости и температуры в этом режиме. Видно, что под воздействием импульса температура жидкости
внутри канала повышается и превышает температуру нагревательного элемента Y0, вследствие чего уменьша-
ются вязкость и время релаксации жидкости, и скорость повышается. Далее при уменьшении Y0 до базовых
значений Ŷ температура жидкости внутри канала остается предельно высокой, что приводит к дальнейшему
росту скорости и к расходимости решения.

Отметим, что расходимость численного решения при воздействии импульса температуры можно наблюдать
только тогда, когда значения градиента давления лежат в достаточно малой окрестности критических величин
|D̂| = D̂crit ≈ 10.526 атм, т. е. таких значений, при которых решение расходится без импульсных воздействий.
Например, в проведенных расчетах действие импульса температуры с параметрами AY = 1, ∆Y = 1 мс уже не
приводит к расходимости численного решения, если |D̂| < 8.245 атм.

На фиг. 9 при D̂ = −10 изображены критические соотношения размерных продолжительности и амплиту-
ды импульсов градиента давления и температуры, т.е. такие значения, при превышении которых численное
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Фиг. 7. Распределение скорости жидкости при наличии импульса температуры в разные моменты времени t: непосредствен-
но до достижения максимальной интенсивности импульса t = 1.788 мс (а), после действия импульса t = 2.212 мс (б), перед
расходимостью численного решения при t = 3.428 мс (в).

Температура t = 1.788 мс t = 2.212 мс t = 3.428 мс
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Фиг. 8. Распределение температуры жидкости при наличии импульса температуры нагревательного элемента в те же мо-
менты времени, что на фиг. 7.

Фиг. 9. Критические соотношения амплитуды и продолжительности импульсов давления (а) и температуры (б). На встав-
ках – графики в логарифмическом масштабе.
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решение расходится, что можно ассоциировать с переходом к сложной непуазейлевской и турбулентной ди-
намике. Как видно из графиков, для существования пуазейлевского течения при наличии импульсов большей
амплитуды требуется сокращать продолжительность импульса и наоборот, для использования продолжитель-
ных импульсов – сокращать их амплитуду. На вставках к графикам фиг. 9 критические соотношения показаны
в логарифмической шкале, откуда видно, что эти соотношения близки к обратной пропорции. Отметим также,
что в рассчитанном режиме существует критическое базовое значение температуры нагревательного элемента
Ŷcrit = 1.3 ≈ 108∘C, которому соответствует критическое значение амплитуды AY

crit = 0.0898. При задании темпе-
ратуры нагревательного элемента ниже этого значения действие импульсов температуры любой продолжитель-
ности не приводит к расходимости численного решения. Отметим также, что значения AY на фиг. 9б являются
довольно малыми по сравнению с AI на фиг. 9а, однако увеличение AY выше значений порядка 1.2 приведет
к нефизичным результатам, поскольку в таком случае температура нагревательного элемента превысит 400∘C,
что близко к температуре спекания или возгорания многих полимерных жидкостей.

5. ЗАКЛЮЧЕНИЕ

В статье на основе мезоскопического подхода построена модель, описывающая неизотермическое течение
пуазейлевского типа несжимаемой вязкоупругой полимерной жидкости в канале с сечением в виде области
между двумя софокусными эллипсами. Модель использована для расчета течений, возникающих в техноло-
гиях 3D печати электропроводящим материалом на полимерной основе, при наличии импульсов градиента
давления и температуры. В этом приложении канал представляет собой дюзу принтера, а его внутреннее вклю-
чение – нагревательный элемент.

С целью численного решения начально-краевой задачи, поставленной для уравнений построенной модели,
разработан и реализован вычислительный алгоритм, основанный на полиномиальных и дробно-рациональных
интерполяциях и применении конечно-разностной схемы по времени, объединенной с итерациями по нели-
нейности.

Проведен анализ распределений скорости и температуры жидкости в канале, а также зависимостей потока и
средней температуры жидкости от времени. Исследован процесс потери устойчивости пуазейлевских течений
под воздействием импульсов градиента давления и температуры. Рассчитаны критические соотношения между
амплитудами и продолжительностями импульсов. Эти соотношения близки к обратной пропорции.

В качестве дальнейшего развития модели имеет смысл учесть более тонкие реологические эффекты, см. [32],
а также тот факт, что плотность жидкости может изменяться при резком изменении температуры, особенно в
случае неравномерного нагрева внутренней стенки канала по координате γ.
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Abstract. A system of non-stationary partial differential equations is obtained that describes non-isothermal
Poiseuille-type flows of an incompressible viscoelastic polymer fluid in a channel with a cross-section
between two confocal ellipses. For the system we posed an initial boundary value problem that describes
the flow in a 3D printer nozzle with a heating element under the pulsed action of the pressure gradient in
the nozzle and of the temperature of the element. For the numerical solution of the problem, an algorithm
is developed that takes into account the singularities of the sought-for functions and is based on polynomial
and rational approximations in spatial variables and on the use of an implicit difference scheme in time. The
distributions of the velocity and temperature of the fluid in the channel, as well as the dependences of the
flow rate and of the average temperature on time are studied, the critical relationships between the values
of the amplitudes and durations of impulses acting on the fluid, when setting which the flow loses stability,
are calculated.

Keywords: polymer fluid, mesoscopic rheological model, pulse action, Poiseuille-type flow, loss of stability,
critical relations between parameters, polynomial with Dirichlet kernel, rational barycentric interpolation
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