
ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ, 2025, том 65, № 2, с. 193–202

УДК 519.6

ТОЧНОЕ РЕШЕНИЕ БИКОМПАКТНОЙ РАЗНОСТНОЙ
СХЕМЫ ДЛЯ СИСТЕМЫ УРАВНЕНИЙ МАКСВЕЛЛА

C 2025 г. А. А. Белов1,*, Ж. О. Домбровская1,**

1117198 Москва, ул. Миклухо-Маклая, 6, РУДН, Россия
*e-mail: aa.belov@physics.msu.ru

**e-mail: dombrovskaya@physics.msu.ru

Поступила в редакцию 10.05.2024 г.

Переработанный вариант 18.10.2024 г.

Принята к публикации 08.11.2024 г.

Одномерные задачи для системы уравнений Максвелла охватывают широкий круг важных прикладных про-
блем. Среди них – задачи фотоники, плазмоники, СВЧ-техники и др. Для таких задач нами ранее была пред-
ложена бикомпактная (двухточечная полностью консервативная) разностная схема. Построено точное реше-
ние соответствующей системы сеточных уравнений. Оно применимо для задач в кусочно-однородных средах
при произвольной конфигурации объемных и поверхностных токов. Построенное решение позволяет кар-
динально снизить трудоемкость расчета таких задач. Библ. 8.
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1. ВВЕДЕНИЕ

1. Интегральная фотоника – это направление оптики, посвященное исследованию наноразмерных
устройств, которые позволяют управлять излучением в ближнем ИК- и видимом диапазоне. Оптические нано-
структуры могут быть основой многих перспективных технических систем: детекторов, логических элементов,
модуляторов, волноводов, элементов оптической вычислительной техники и т.д.

Для планирования экспериментов, а также для разработки новых технических систем широко применяется
численное моделирование. В задачах фотоники присутствуют границы раздела сред, на которых материальные
параметры изменяются скачком. Существующие разностные методы в таких задачах имеют значительную по-
грешность, и достижение высокой точности требует больших объемов вычислений. Это особенно важно при
решении задач проектирования, в ходе которых требуется многократное решение прямой задачи с направлен-
ным варьированием параметров.

2. Подробный обзор известных подходов приведен в [1]. Многие известные алгоритмы для решения уравне-
ний Максвелла (матричные методы, методы дискретных источников, модальные методы, псевдоспектральные
методы, методы мультипольной аппроксимации, методы конечных разностей и конечных элементов в частот-
ной области) дают хорошие результаты для достаточно узких классов задач.

Наиболее универсальны методы конечных разностей (FD-time domain), конечных элементов (FE-time
domain) и конечных объемов (FV-time domain) во временной области. Практически все они сводятся к схеме
типа «крест», в которой электрическое и магнитное поля относятся к целым и полуцелым пространственным
узлам и временным слоям.

Алгоритмы FDTD, FETD, FVTD имеют следующие принципиальные недостатки: 1) ни в одном из них не
реализованы физически корректные условия сопряжения на границах раздела сред, поэтому методы данного
класса не являются полностью консервативными, что приводит к резкому ухудшению точности и появлению
нефизичных пилообразных осцилляций численного решения; 2) в случае сильно диспергирующих сред извест-
ные методы вносят существенную погрешность.

3. Эти недостатки удалось преодолеть в предложенных нами бикомпактных схемах и методе спектрального
разложения (см. [2]). Это двухточечные полностью консервативные схемы, основанные на сеточной аппрок-
симации интегральных уравнений Максвелла и условий сопряжения на границах раздела сред. Поэтому би-
компактные схемы сходятся как на гладких, так и на обобщенных решениях. В методе спектрального разло-
жения немонохроматическая задача сводится к набору монохроматических задач с помощью сеточного пре-
образования Фурье. Это позволяет учитывать произвольный закон частотной дисперсии. Расчеты тестовых и
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прикладных задач (см. [3]) убедительно показали преимущества бикомпактных схем и метода спектрального
разложения по сравнению с другими известными подходами.

Таким образом, бикомпактные схемы и метод спектрального разложения представляются наиболее пер-
спективными подходами. Актуально их дальнейшее развитие, связанное с уменьшением трудоемкости расчета.

4. Бикомпактная разностная схема есть система большого количества линейных алгебраических уравнений.
Ее матрица имеет ленточную структуру. В общем случае для ее решения целесообразно применять метод Гаусса
для ленточных матриц. Однако есть ряд важных частных случаев, когда эта система допускает явное решение в
конечном виде. Подобные случаи являются уникальными. По экономичности такие решения превосходят даже
явные схемы бегущего счета (см. [4]). Насколько нам известно, единственное ранее известное решение такого
класса было построено Калиткиным для схем бегущего счета для уравнения Ван–Хопфа (см. [5]). К сожалению,
оно не было опубликовано в открытой печати.

В настоящей статье построено явное решение бикомпактной разностной схемы для системы монохрома-
тических уравнений Максвелла. Оно справедливо для кусочно-однородных диэлектрических сред, в которых
текут заданные объемные и поверхностные токи. Вкупе с методом спектрального разложения это решение мож-
но использовать для расчета немонохроматических задач. Такие постановки охватывают достаточно широкий
круг важных прикладных задач. Предлагаемое решение позволяет кардинально снизить трудоемкость их рас-
чета.

2. ПОСТАНОВКА ЗАДАЧИ

1. Рассмотрим плоскопараллельный рассеиватель, состоящий из Q пластин (диэлектрических либо прово-
дящих). Пусть декартова ось z ориентирована перпендикулярно рассеивателю. Поле E направлено вдоль оси x,
поле H – вдоль оси y. На границах раздела z = ξq диэлектрическая проницаемость ε, магнитная восприимчи-
вость µ и проводимость σ меняются скачком.

На рассеиватель из обоих направлений оси z нормально падают плоские линейно поляризованные моно-
хроматические волны. В проводящих пластинах текут внешние монохроматические токи Jext

q (z), параллельные
границам раздела. Поле индуцирует токи проводимости σE. По границам раздела текут монохроматические по-
верхностные токи с объемной плотностью ∼ δ(z−ξq). Они могут быть внешними jext

q и индуцированными σsurfE.
2. Данная задача описывается системой монохроматических уравнений Максвелла. Запишем ее в интеграль-

ной форме ∫︁
Γ

Hqdl −
4π
c

∫︁
S
σqEqds +

iω
c

∫︁
S
Dqds =

4π
c

∫︁
S
Jext

q ds, Dq = εqEq, (1)∫︁
Γ

Eqdl =
iω
c

∫︁
S
Bqds, Bq = µqHq. (2)

Здесь S – произвольная поверхность, ограниченная контуром Γ,ω– частота поля, c – скорость света в вакууме.
На границах расчетной области ставят условия излучения

∂E1/∂z + ik0E1 = 2ik0E
0, z = 0; ∂EQ/∂z − ikaEQ = 2ikaE

ae−ika, z = a; (3)

на границах раздела сред – условия сопряжения

ez × (Eq −Eq−1) = 0, ez(Dq −Dq−1) = 0,
ez × (Hq −Hq−1) − 4πc−1σsurf

q ez ×Eq = 4πc−1jext
q , ez(Bq −Bq−1) = 0. (4)

3. БИКОМПАКТНАЯ РАЗНОСТНАЯ СХЕМА

Введем специальную сетку {zn}, 0 ⩽ n ⩽ N, ∆zn+1/2 = zn+1 − zn, у которой границы слоев являются узла-
ми (см. [6]). Для каждого шага ∆zn−1/2, 1 ≤ n ≤ N, введем значения полей E2n−2, H2n−2, относящиеся к левой
границе zn−1, и значения полей E2n−1, H2n−1, относящиеся к правой границе zn.

Интегралы вычислим по формуле трапеций. Условия сопряжения аппроксимируются точно. Производные
∂E1/∂z, ∂EQ/∂z выразим из дифференциального уравнения Максвелла rotEq = iωc−1µqHq, записанного в узлах
z0 и zN . Получим бикомпактную разностную схему (см. [1])

√
ε0E0 +

√
µ0H0 = 2

√
ε0E0, (5)

H2n − H2n−2 + αn−1/2∆zn−1/2(E2n + E2n−2) +
4π
c
σ

surf
n E2n =

4π
c

(Jn−1/2∆zn−1/2 − jn), (6)
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E2n − E2n−2 −
iω
2c
µn−1/2∆zn−1/2(H2n + H2n−2) −

4π
c
σ

surf
n E2n =

4πiω
2c2 µn−1/2∆zn−1/2 jn, (7)

√
εN E2N−1 −

√
µN H2N−1 = 2

√
εN Ea. (8)

Здесь α = −iωεc−1 + 4πc−1σ. В уравнениях (6), (7) индекс n пробегает значения от 1 до N. В последнем N-м узле
сетки поля считаем непрерывными, так что E2N−1 = E2N, H2N−1 = H2N . Таким образом, система (5)–(8) содержит
2N + 2 уравнения. Ее матрица является пятидиагональной.

Построим явное решение этой системы разностных уравнений. Сначала рассмотрим ряд простых частных
задач и установим общие закономерности поведения решения, затем воспользуемся принципом суперпозиции.

4. ОДНОРОДНАЯ СРЕДА

1. Рассмотрим задачу об однородной среде ε = const, µ = const, ε ̸= µ. Пусть слева падает волна с амплиту-
дой E0, а волна справа отсутствует Ea = 0. Пусть сначала сетка содержит N = 1 шаг ∆z1/2. Тогда разностная схема
содержит четыре уравнения

√
µH0 +

√
εE0 = 2

√
εE0, E2 − E0 − β1/2µ(H2 + H0) = 0,

H2 − H0 − β1/2ε(E2 + E0) = 0,
√
µH2 −

√
εE2 = 0. (9)

Здесь введено обозначение
β1/2 = 0.5i

ω

c
∆z1/2. (10)

Из условий сопряжения следует, что в данной задаче поля E и H непрерывны в узлах. Поэтому можно использо-
вать только значения полей E2n, H2n с четными индексами, считая, что значения полей с нечетными индексами
исключены из системы.

Решение системы (9) имеет следующий вид:

E0 = E0, H0 = E0
√︂
ε

µ
, E2 = E0 1 + β1/2n

1 − β1/2n
, H2 = E0

√︂
ε

µ

1 + β1/2n
1 − β1/2n

. (11)

Здесь n =
√
εµ – показатель преломления. Легко видеть, что

E2

E0
=

H2

H0
=

1 + β1/2n
1 − β1/2n

≡ A1/2. (12)

Величину ln A1/2 можно трактовать как набег фазы волны при переходе от точки 0 к точке ∆z1/2. Нетрудно убе-
диться, что она совпадает с точным значением 2β1/2n∆z1/2 с точностью до членов O(∆z2).

2. Пусть теперь сетка содержит N = 2 ячейки ∆z1/2, ∆z3/2. Запишем соответствующую систему разностных
уравнений

√
µH0 +

√
εE0 = 2

√
εE0, E2 − E0 − β1/2µ(H2 + H0) = 0,

H2 − H0 − β1/2ε(E2 + E0) = 0, E4 − E2 − β3/2µ(H4 + H2) = 0,
H4 − H2 − β3/2ε(E4 + E2) = 0,

√
µH4 −

√
εE4 = 0.

(13)

Величина β3/2 определяется аналогично (10).
Решение системы (13) имеет следующий вид. Компоненты E0, H0, E2, H2 совпадают с (11), компоненты E4,

H4 равны

E4 = E0 1 + β1/2n
1 − β1/2n

1 + β3/2n
1 − β3/2n

, H4 = E0
√︂
ε

µ

1 + β1/2n
1 − β1/2n

1 + β3/2n
1 − β3/2n

. (14)

Имеют место соотношения
E4

E2
=

H4

H2
=

1 + β3/2n
1 − β3/2n

≡ A3/2. (15)

Таким образом, решение задачи (13) можно представить в виде

E0 = E0, E2 = A1/2E0, E4 = A1/2A3/2E0;
H0 =

√
ε/µE0, H2 = A1/2H0, H4 = A1/2A3/2H0.

(16)

Формулы (16) имеют простую физическую интерпретацию. Волна распространяется сначала на шаг∆z1/2, затем
на шаг ∆z3/2. Материальные параметры в ячейках ∆1/2 и ∆3/2 одинаковы, поэтому переотражений от границ
ячеек не возникает. Значения полей E2, H2 в узле n = 1 можно трактовать как граничные условия для области,
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состоящей из шага ∆z3/2. Поэтому к ней можно снова применить формулы (11), заменив E0 → E2. Аналогично
можно поступить в случае сетки, содержащей N = 3 интервала и т.д.

3. В (16) легко просматривается закономерность, которая позволяет выписать решение для сетки с произ-
вольным числом шагов. Это решение имеет следующий вид:

E2n = E0
n∏︁

k=1

1 + βk−1/2n
1 − βk−1/2n

, H2n =

√︂
ε

µ
E2n. (17)

Формулу (17) нетрудно доказать по индукции.
4. Полностью аналогично строится решение для случая, когда волна с амплитудой Ea ̸= 0 падет из z = +∞, а

волна из z = −∞ отсутствует (E0 = 0). Тогда в (17) нужно заменить E0 → Ea и изменить знак у H:

E2n = Ea
N−1∏︁
k=n

1 + βk−1/2n
1 − βk−1/2n

, H2n = −

√︂
ε

µ
E2n. (18)

По принципу суперпозиции, если оба граничных условия являются ненулевыми, то нужно взять сумму
(17), (18).

5. ОБЪЕМНЫЕ ТОКИ

1. Рассмотрим задачу об однородной среде, в которой течет объемный ток. Пусть сетка содержит N = 1 ячей-
ку, в которой течет ток с плотностью J1/2. Пусть волны, падающие из бесконечности, отсутствуют: E0 = Ea = 0.
Разностная схема имеет вид

√
εE0 +

√
µH0 = 0, E2 − E0 − β1/2µ(H2 + H0) = 0,

H2 − H0 − β1/2ε(E2 + E0) =
4π
c

J1/2∆z1/2,
√
εE2 −

√
µH2 = 0.

(19)

Решение этой разностной задачи имеет вид

E0 = E2 =
2π
c

√︂
µ

ε

J1/2∆z1/2

1 − β1/2n
≡ ℰJ

1/2, H0 = −H2 = −
2π
c

J1/2∆z1/2

1 − β1/2n
. (20)

Имеют место закономерности H2 = −
√
ε/µE2, H0 =

√
ε/µE0. Величина ℰJ

1/2 есть функция точечного источника,
соответствующего объемным токам.

2. Пусть теперь сетка содержит N = 3 ячейки, причем плотность тока J3/2 ̸= 0, относящаяся к среднему шагу,
отлична от нуля, а токи в крайних шагах J1/2 = J5/2 = 0 равны нулю. Запишем систему разностных уравнений

√
εE0 +

√
µH0 = 0, E2 − E0 − β1/2µ(H2 + H0) = 0,

H2 − H0 − β1/2ε(E2 + E0) = 0, E4 − E2 − β3/2µ(H4 + H2) = 0,

H4 − H2 − β3/2ε(E4 + E2) =
4π
c

J3/2∆z3/2, E6 − E4 − β5/2µ(H6 + H4) = 0,

H6 − H4 − β5/2ε(E6 + E4) = 0,
√
εE6 −

√
µH6 = 0.

(21)

Решение этой разностной задачи имеет вид

E0 =
2π
c

√︂
µ

ε

J3/2∆z3/2

1 − β3/2n
1 + β1/2n
1 − β1/2n

, E2 = E4 =
2π
c

√︂
µ

ε

J3/2∆z3/2

1 − β3/2n
,

E6 =
2π
c

√︂
µ

ε

J3/2∆z3/2

1 − β3/2n
1 + β5/2n
1 − β5/2n

,

H0 = −
2π
c

J3/2∆z3/2

1 − β3/2n
1 + β1/2n
1 − β1/2n

, H2 = −H4 = −
2π
c

J3/2∆z3/2

1 − β3/2n
,

H6 =
2π
c

J3/2∆z3/2

1 − β3/2n
1 + β5/2n
1 − β5/2n

.

(22)

Перепишем это решение в более компактной форме:

E0 = A1/2ℰ
J
3/2, E2 = E4 = ℰ

J
3/2, E6 = A5/2ℰ

J
3/2,

H0 = A1/2

√︂
ε

µ
ℰJ

3/2, H2 = −H4 =

√︂
ε

µ
ℰJ

3/2, H6 = −A5/2

√︂
ε

µ
ℰJ

3/2.
(23)
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Физическая интерпретация этих соотношений аналогична формулам (16). Значения поля E2, H2 и E4, H4 яв-
ляются граничным условием для волн, распространяющихся соответственно в отрицательном и положитель-
ном направлениях оси z. «Набег фазы» этих волн описывается множителями A1/2 и A5/2. При этом для волн,
распространяющихся в отрицательном направлении оси z, выполняется H = −

√
ε/µE. Для волн, распространя-

ющихся в положительном направлении, знак следует изменить на противоположный: H =
√
ε/µE.

3. Опираясь на (23), нетрудно записать решение для случая, когда сетка содержит произвольное число шагов
N > 3, но ток отличен от нуля только в шаге n0: Jn0−1/2 ̸= 0, Jn−1/2 = 0 при n ̸= n0. Имеем

E2n0−2−2q =

q∏︁
p=1

An0−1/2−pℰ
J
n0−1/2, H2n0−2−2q = −

√︂
ε

µ

q∏︁
p=1

An0−1/2−pℰ
J
n0−1/2,

E2n0−2 = ℰ
J
n0−1/2, H2n0−2 = −

√︂
ε

µ
ℰJ

n0−1/2,

E2n0 = ℰ
J
n0−1/2, H2n0 =

√︂
ε

µ
ℰJ

n0−1/2,

E2n0+2q =

q∏︁
p=1

An0−1/2+pℰ
J
n0−1/2, H2n0+2q =

√︂
ε

µ

q∏︁
p=1

An0−1/2+pℰ
J
n0−1/2.

(24)

Здесь q ⩾ 1. Эти формулы следуют из (17), (18) и (20).
4. Если ток присутствует в нескольких ячейках, то нужно просуммировать выражения (24) по индексу n0.

При этом вклад в поле E от всех ячеек с током берется со знаком «+». Вклад в поле H в узлах, расположен-
ных левее выбранной ячейки с током, учитывается со знаком «−», а в узлах, расположенных правее выбранной
ячейки – со знаком «+».

В качестве примера приведем решение задачи, в которой сетка содержит четыре интервала, причем объем-
ные токи в средних интервалах отличны от нуля: J3/2 ̸= 0, J5/2 ̸= 0, а в граничных – равны нулю: J1/2 = J7/2 = 0.
Это решение имеет вид

E0 = A1/2ℰ
J
1/2 + A1/2A3/2ℰ

J
5/2, H0 = −

√︂
ε

µ
(A1/2ℰ

J
1/2 + A1/2A3/2ℰ

J
5/2),

E2 = ℰ
J
3/2 + A3/2ℰ

J
5/2, H2 = −

√︂
ε

µ
(ℰJ

3/2 + A3/2ℰ
J
5/2),

E4 = ℰ
J
3/2 + ℰ

J
5/2, H4 =

√︂
ε

µ
(ℰJ

3/2 − ℰ
J
5/2),

E6 = A5/2ℰ
J
3/2 + ℰ

J
5/2, H6 =

√︂
ε

µ
(A5/2ℰ

J
3/2 + ℰ

J
5/2),

E8 = A7/2A5/2ℰ
J
3/2 + A7/2ℰ

J
5/2, H8 =

√︂
ε

µ
(A7/2A5/2ℰ

J
3/2 + A7/2ℰ

J
5/2).

(25)

Оно построено по описанному выше правилу. Можно непосредственно проверить, что это решение удовлетво-
ряет системе

√
εE0 +

√
µH0 = 0, E2 − E0 − β1/2µ(H2 + H0) = 0,

H2 − H0 − β1/2ε(E2 + E0) = 0, E4 − E2 − β3/2µ(H4 + H2) = 0,

H4 − H2 − β3/2ε(E4 + E2) =
4π
c

J3/2∆z3/2, E6 − E4 − β5/2µ(H6 + H4) = 0,

H6 − H4 − β5/2ε(E6 + E4) =
4π
c

J5/2∆z5/2, E8 − E6 − β7/2µ(H8 + H6) = 0,

H8 − H6 − β7/2ε(E8 + E6) = 0,
√
εE8 −

√
µH8 = 0.

(26)

6. ПОВЕРХНОСТНЫЕ ТОКИ

1. Рассмотрим однородную среду ε = const, µ = const, ε ̸= µ. Пусть в плоскости z = z1 = const течет внешний
(заданный) поверхностный ток j1, а индуцированные поверхностные токи равны нулю σsurf = 0. Пусть сетка
содержит N = 2 интервала, причем точка z1 является внутренним узлом. Пусть также волны, падающие из
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бесконечности, отсутствуют: E0 = Ea = 0. Запишем систему разностных уравнений для этой задачи
√
εE0 +

√
µH0 = 0, E2 − E0 − β1/2µ(H1 + H0) = 0,

H1 − H0 − β1/2ε(E2 + E0) = 0, H2 − H1 = −
4π
c

j1,

E4 − E2 − β3/2µ(H3 + H2) = 0, H4 − H2 − β3/2ε(E4 + E2) = 0,
√
εE4 −

√
µH4 = 0.

(27)

Заметим, что левое предельное значение H1 в узле z1 отличается от правого предельного значения H2. Левое и
правое предельные значения электрического поля в этом узле совпадают: E1 = E2. В узлах z0, z2 поля непрерыв-
ны.

Решение этой разностной задачи имеет вид

E0 = −
2π
c

j1

√︂
µ

ε

1 + β1/2n
1 − β1/2n

, H0 =
2π
c

j1
1 + β1/2n
1 − β1/2n

,

E2 = −
2π
c

√︂
µ

ε
j1, H2 = −H1 = −

2π
c

j1,

E4 = −
2π
c

j1

√︂
µ

ε

1 + β3/2n
1 − β3/2n

, H4 = −
2π
c

j1
1 + β3/2n
1 − β3/2n

.

(28)

Это решение подчиняется той же закономерности, что мы видели в предыдущих примерах. Для волны, бегу-
щей в сторону z = −∞, имеем H = −

√
ε/µE. Для волны, бегущей в сторону z = +∞, выполнено H =

√
ε/µE.

Поля E2, H2 являются граничным условием для волн, распространяющихся в обоих направлениях оси z. При
этом смещение от точки расположения источника на один шаг влево приводит к умножению полей на A1/2.
При смещении вправо поля умножаются на A3/2. Логарифмы этих множителей можно трактовать как набеги
фаз соответствующих волн. Удобно ввести обозначение

ℰ
j
1 = −

2π
c

√︂
µ

ε
j1. (29)

Тогда (28) можно записать в более компактной форме:

E0 = A1/2ℰ
j
1, H0 = −A1/2

√︂
ε

µ
ℰ

j
1,

E2 = ℰ
j
1, H2 = −H1 =

√︂
ε

µ
ℰ

j
1,

E4 = A3/2ℰ
j
1, H4 = A3/2

√︂
ε

µ
ℰ

j
1.

(30)

2. Рассмотрим теперь задачу на сетке, содержащей N = 4 интервала. Пусть поверхностный ток j2 присут-
ствует в узле z2, а в прочих узлах равен нулю: jn = 0, n = 0, 1, 3, 4. Разностная схема имеет вид

√
εE0 +

√
µH0 = 0, E2 − E0 − β1/2µ(H2 + H0) = 0,

H2 − H0 − β1/2ε(E2 + E0) = 0, E4 − E2 − β3/2µ(H3 + H2) = 0,

H3 − H2 − β3/2ε(E4 + E2) = 0, H4 − H3 = −
4π
c

j2,

E6 − E4 − β5/2µ(H6 + H4) = 0, H6 − H4 − β5/2ε(E6 + E4) = 0,
E8 − E6 − β7/2µ(H8 + H6) = 0, H8 − H6 − β7/2ε(E8 + E6) = 0,
√
εE8 −

√
µH8 = 0.

(31)

Приведем решение этой задачи

E0 = −
2π
c

j2

√︂
µ

ε

1 + β1/2n
1 − β1/2n

1 + β3/2n
1 − β3/2n

, H0 =
2π
c

j1
1 + β1/2n
1 − β1/2n

1 + β3/2n
1 − β3/2n

,

E2 = −
2π
c

√︂
µ

ε
j2

1 + β3/2n
1 − β3/2n

, H2 =
2π
c

j2
1 + β3/2n
1 − β3/2n

,

E4 = −
2π
c

j1

√︂
µ

ε
, H4 = −H3 = −

2π
c

j1,

E6 = −
2π
c

√︂
µ

ε
j2

1 + β5/2n
1 − β5/2n

, H6 = −
2π
c

j2
1 + β5/2n
1 − β5/2n

,

E8 = −
2π
c

√︂
µ

ε
j2

1 + β5/2n
1 − β5/2n

1 + β7/2n
1 − β7/2n

, H8 = −
2π
c

j2
1 + β5/2n
1 − β5/2n

1 + β7/2n
1 − β7/2n

,

(32)
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или в более компактной форме:

E0 = A1/2A3/2ℰ
j
2, H0 = −A1/2A3/2

√︂
ε

µ
ℰ

j
2,

E2 = A3/2ℰ
j
2, H2 = −A3/2

√︂
ε

µ
ℰ

j
2,

E4 = ℰ
j
2, H4 = −H3 =

√︂
ε

µ
ℰ

j
2,

E6 = A5/2ℰ
j
2, H6 = A5/2

√︂
ε

µ
ℰ

j
2,

E8 = A5/2A7/2ℰ
j
2, H8 = A5/2A7/2

√︂
ε

µ
ℰ

j
2.

(33)

В этом решении видны те же закономерности, что и в предыдущих примерах. Удаление узла на один шаг от точ-
ки расположения источника эквивалентно умножению поля на множитель A с индексом, равным номеру соот-
ветствующего шага. В точках, для которых координата z больше, чем z-координата источника, электрическое
и магнитное поля связаны соотношением H =

√
ε/µE. В точках с z-координатой меньшей, чем z-координата

источника, знак в последнем соотношении нужно изменить на противоположный H = −
√
ε/µE.

3. Пользуясь решениями (30) и (17), (18), нетрудно составить решение задачи, в которой сетка является
произвольной неравномерной, и поверхностный ток присутствует только в узле n0. Оно имеет вид

E2n0−2−2q =
∏︀q

p=1 An0−1/2−pℰ
j
n0 , H2n0−2−2q = −

√︂
ε

µ

∏︀q
p=1 An0−1/2−pℰ

j
n0 ,

E2n0 = ℰ
j
n0 , H2n0 = −H2n0−1 =

√︂
ε

µ
ℰ

j
n0 ,

E2n0+2q =
∏︀q

p=1 An0−1/2+pℰ
j
n0 , H2n0+2q =

√︂
ε

µ

∏︀q
p=1 An0−1/2+pℰ

j
n0 .

(34)

Здесь индекс q принимает значения q ⩾ 1.
4. Если поверхностные токи текут по нескольким плоскостям {zn0 }, то необходимо взять сумму по n0 выра-

жений вида (34).
В качестве примера приведем решение задачи, в которой сетка содержит три интервала, причем во внутрен-

них узлах z = z1 и z = z2 расположены плоскости с поверхностными токами j1 и j2 соответственно. Это решение
выглядит следующим образом:

E0 = A1/2ℰ
j
1 + A1/2A3/2ℰ

j
2, E2 = ℰ

j
1 + A3/2ℰ

j
2,

E4 = A3/2ℰ
j
1 + ℰ

j
2, E6 = A3/2A5/2ℰ

j
1 + A5/2ℰ

j
2,

H0 = −

√︂
ε

µ
(A1/2ℰ

j
1 + A1/2A3/2ℰ

j
2), H1 = −

√︂
ε

µ
(ℰ j

1 + A3/2ℰ
j
2),

H2 =

√︂
ε

µ
(ℰ j

1 − A3/2ℰ
j
2), H3 =

√︂
ε

µ
(A3/2ℰ

j
1 − ℰ

j
2),

H4 =

√︂
ε

µ
(A3/2ℰ

j
1 + ℰ

j
2), H6 =

√︂
ε

µ
(A3/2A5/2ℰ

j
1 + A5/2ℰ

j
2).

(35)

Прямой подстановкой нетрудно убедиться, что это решение удовлетворяет разностной задаче
√
εE0 +

√
µH0 = 0, E2 − E0 − β1/2µ(H1 + H0) = 0,

H1 − H0 − β1/2ε(E2 + E0) = 0, H2 − H1 = −
4π
c

j1,

E4 − E2 − β3/2µ(H3 + H2) = 0, H3 − H2 − β3/2ε(E4 + E2) = 0,

H4 − H3 = −
4π
c

j2, E6 − E4 − β5/2µ(H6 + H4) = 0,

H6 − H4 − β5/2ε(E6 + E4) = 0,
√
εE6 −

√
µH6 = 0.

(36)

7. СУПЕРПОЗИЦИЯ РЕШЕНИЙ

В общем случае поле может возбуждаться волнами E0 ̸= 0, Ea ̸= 0, приходящими из z = −∞ и z = +∞, объем-
ными {Jn0−1/2} и поверхностными { jn0 } токами. Тогда точное решение системы разностных уравнений представ-
ляется суммой выражений (17), (18), (24), (34), причем две последних формулы суммируются по индексам n0,
соответствующим ненулевым токам.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 2 2025



200 БЕЛОВ, ДОМБРОВСКАЯ

8. КУСОЧНО-ОДНОРОДНЫЕ СРЕДЫ

1. Пусть материальные параметры являются кусочно-постоянными функциями координаты, и пусть число
слоев среды невелико по сравнению с числом шагов сетки. Пусть координаты слоев ξq соответствуют узлам
сетки с номерами nq.

Пусть объемные токи отсутствуют, а источником поля являются граничные условия. Тогда решение в каж-
дом слое среды нужно представить в виде суперпозиции сеточных волн «слева направо» и «справа налево» с
некоторыми коэффициентами Cq, Dq. Так, в q-м слое имеем

E2n = Cq

n∏︁
k=nq−1+1

1 + βk−1/2nq

1 − βk−1/2nq
+ Dq

nq−1∏︁
k=n

1 + βk−1/2nq

1 − βk−1/2nq
, (37)

H2n =

√︂
εq

µq

⎡⎣Cq

n∏︁
k=nq−1+1

1 + βk−1/2nq

1 − βk−1/2nq
− Dq

nq−1∏︁
k=n

1 + βk−1/2nq

1 − βk−1/2nq

⎤⎦ . (38)

Коэффициенты Cq, Dq суть амплитуды волн, падающих на q-й слой слева и справа соответственно. Индекс n
пробегает значения nq−1 ≤ n ≤ nq. В частности, если n = nq−1, то первое произведение в (37), (38) полагается рав-
ным единице; если n = nq, то второе произведение равно единице. Материальные параметры εq, µq, nq =

√
εqµq

относятся к q-му слою.
Коэффициенты Cq, Dq определяются подстановкой (37), (38) в условия излучения на границах расчетной

области и в условия сопряжения на границах раздела сред. Приведем соответствующую систему уравнений

C0 = E0, DQ = Ea, (39)

Cq

nq∏︁
k=nq−1+1

1 + βk−1/2nq

1 − βk−1/2nq
+ Dq = Cq+1 + Dq+1

nq+1−1∏︁
k=nq

1 + βk−1/2nq+1

1 − βk−1/2nq+1
, (40)

√︂
εq

µq

⎡⎣Cq

nq∏︁
k=nq−1+1

1 + βk−1/2nq

1 − βk−1/2nq
− Dq

⎤⎦ =√︂
εq+1

µq+1

⎡⎣Cq+1 − Dq+1

nq+1−1∏︁
k=nq

1 + βk−1/2nq+1

1 − βk−1/2nq+1

⎤⎦ . (41)

В (40), (41) индекс q принимает значения 1 ≤ q ≤ Q− 1. Решить эту систему в конечном виде не удается. Од-
нако ее порядок 2Q существенно ниже, чем у исходной системы разностных уравнений 2N+2. Это существенно
снижает трудоемкость вычислений. Такой алгоритм напоминает известный метод матриц переноса (см. [7]).

2. Если объемные и поверхностные токи отличны от нуля, то они также создают волны, распространяю-
щиеся в обоих направлениях координатной оси. Когда волна «слева направо» достигает границы раздела, она
отражается и формирует волну «справа налево» (с некоторым коэффициентом) и наоборот. Значит, в каждом
слое среды к решениям из разделов 5 и 6 нужно прибавить линейную комбинацию сеточных волн с некоторы-
ми коэффициентами. Далее полученные решения подставляются в граничные условия и условия сопряжения
на границах раздела сред, аналогично описанному выше.

3. Приведем пример. Пусть сетка состоит из N = 2 ячеек ∆z1/2, ∆z3/2. В точке ξ = z1 = ∆z1/2 расположена
граница раздела. При z < z1 материальные параметры равны ε1/2, µ1/2; при z > z1 – ε3/2, µ3/2.

Запишем разностную схему
√
µ1/2H0 +

√
ε1/2E0 = 2√ε1/2E0, E2 − E0 − β1/2µ1/2(H2 + H0) = 0,

H2 − H0 − β1/2ε1/2(E2 + E0) = 0, E4 − E2 − β3/2µ3/2(H4 + H2) = 0,
H4 − H2 − β3/2ε3/2(E4 + E2) = 0, √µ3/2H4 −

√
ε3/2E4 = 0.

(42)

Представим решение согласно (37), (38)

E0 = C1 + D1
1 + β1/2n1/2

1 − β1/2n1/2
, H0 =

√︂
ε1/2

µ1/2

[︂
C1 + D1

1 + β1/2n1/2

1 − β1/2n1/2

]︂
, (43)

E2 = C1
1 + β1/2n1/2

1 − β1/2n1/2
+ D1, H2 =

√︂
ε1/2

µ1/2

[︂
C1

1 + β1/2n1/2

1 − β1/2n1/2
+ D1

]︂
, (44)

E2 = C2 + D2
1 + β3/2n3/2

1 − β3/2n3/2
, H2 =

√︂
ε3/2

µ3/2

[︂
C2 + D2

1 + β3/2n3/2

1 − β3/2n3/2

]︂
, (45)

E4 = C2
1 + β3/2n3/2

1 − β3/2n3/2
+ D2, H4 =

√︂
ε1/2

µ1/2

[︂
C2

1 + β3/2n3/2

1 − β3/2n3/2
+ D2

]︂
. (46)
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Прямой подстановкой можно убедиться, что решение вида (43)–(46) тождественно удовлетворяет системе (42).
Остается определить коэффициенты.

Из (39) следует, что C1 = E0, D2 = 0. Согласно (40), (41), приравняем значения E2 из (44) и (45). Аналогично
приравняем H2 из (44) и (45). Получим систему уравнений относительно коэффициентов D1 и C2. Ее решение
имеет вид

D1 = RE0 1 + β1/2n1/2

1 − β1/2n1/2
, C2 = (1 + R)E0 1 + β1/2n1/2

1 − β1/2n1/2
,

R ≡

√︀
ε1/2/µ1/2 −

√︀
ε3/2/µ3/2√︀

ε1/2/µ1/2 +
√︀
ε3/2/µ3/2

.
(47)

Полученные выражения имеют простую физическую интерпретацию. Величина E0(1 + β1/2n1/2)(1 − β1/2n1/2)
есть амплитуда сеточной волны непосредственно на границе раздела. Множитель R равен хорошо известному
коэффициенту отражения от плоской границы раздела сред при нормальном падении (см. [8]). В частности,
отсюда следует, что в бикомпактной схеме (5)–(8) сеточный закон сохранения энергии при прохождении через
слоистую среду выполняется точно (в пределах ошибок округления). Это подтверждается численными расче-
тами конкретных примеров (см. [3]).

9. НЕМОНОХРОМАТИЧЕСКИЕ ЗАДАЧИ

1. В этом случае внешние объемные и поверхностные токи являются импульсами по времени. На рассеива-
тель из обоих направлений оси z падают волновые пакеты с заданными огибающими E0,a и несущей частотойω0:

f 0(ζ) = E0(ζ)e−iω0ζ, ζ = t − z/c; f a(χ) = Ea(χ)e−iω0χ, χ = t + z/c. (48)

Поле не является монохроматическим, а содержит спектр частот.
2. Для такой задачи в [2] нами ранее был предложен метод спектрального разложения. Выполним численно

преобразование Фурье падающих волновых пакетов, объемных и поверхностных токов по формуле трапеций
на одинаковых сетках по времени и по частоте {ωm}, ωm+1 − ωm = ∆ωm.

Для каждой частоты получим свои амплитуды компонент падающих волновых пакетов E0,a
m и источников

поля (Jq)m, ( jq)m. Решим с помощью бикомпактной схемы набор стационарных задач, каждая из которых соот-
ветствует своей частотеωm. Для этого целесообразно использовать построенное выше явное решение. Наконец,
просуммируем полученные спектральные амплитуды решения по всем частотам ωm.

10. ЗАКЛЮЧЕНИЕ

Построенное решение является новым. Для однородных сред оно записывается по явным формулам (в ука-
занных выше формулах поля выражены друг через друга только для компактности записи). В случае кусочно-
однородных сред для определения коэффициентов нужно решить систему линейных алгебраических уравне-
ний, порядок которой существенно ниже порядка исходной сеточной системы. При этом сетка {∆zn−1/2} может
быть произвольно неравномерной. Конфигурация объемных и поверхностных токов также может быть произ-
вольной.

Трудоемкость предлагаемого решения эквивалентна таковой для метода матриц переноса. При этом рас-
сматриваемый круг задач существенно шире, поскольку матричные методы не применимы к задачам со сто-
ронними источниками поля и поверхностными токами.

Предлагаемое решение намного экономичнее прямого решения сеточной системы. Оно особенно эффек-
тивно, если число Q слоев рассеивателя существенно меньше числа N шагов сетки. По мере увеличения Q раз-
мерность системы (39)–(41) растет. В частности, для градиентных сред с плавным изменением показателя пре-
ломления толщины слоев соответствуют одному шагу сетки, и система (39)–(41) становится эквивалентна ис-
ходной разностной схеме (5)–(8). В этом случае целесообразно решать непосредственно исходную разностную
задачу.

Авторы искренне благодарны Л. А. Севастьянову за ценные замечания и обсуждения.
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Abstract. One-dimensional problems for the system of Maxwell equations cover a wide range of important
applied problems. Among them are problems of photonics, plasmonics, microwave technology, etc. For
such problems, we previously proposed a bicompact (two-point completely conservative) difference scheme.
An exact solution to the corresponding system of grid equations is constructed. It is applicable to problems
in piecewise homogeneous media with an arbitrary configuration of volume and surface currents. The
constructed solution makes it possible to dramatically reduce the labor intensity of calculating such
problems.
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