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1. ВВЕДЕНИЕ

В работах [1], [2] представлены одномерные уравнения, описывающие волны в микрополярной магнито-
упругой среде согласно теории Коссера, там же имеется анализ развития этой теории и ссылки на первого раз-
работчика. Среда электропроводящая и взаимодействует с внешним магнитным полем. Описание теории упру-
гости Коссера, применяемой для геоматериалов, гранулированных и сыпучих сред, можно найти в [3]. Имеется
три варианта уравнений [2].

Система уравнений с двумя неизвестными:
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Здесь t — время, x — пространственная координата, v — компонента вектора перемещения, ϕ3 — компонен-
та вектора вращения ρ — плотность, I — показатель инерции при вращении, µ — постоянная Ламе, α, γ, ϵ —
физические константы модели Коссера, H1 - напряженность внешнего магнитного поля.

Продифференцировав (1.2) по x и исключив из него ϕ3x, с помощью (1.1) можно получить уравнение в пе-
ремещениях с одними неизвестным:
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Здесь cτ = (µ/ρ)1/2, cϕ = [(γ + ϵ)/I]1/2, ct = [(µ + α)/ρ]1/2, c2
θ = c2

τ − c2
A, c2

T = c2
t − c2

A, cA = [H2
1/(4πρ)]

1/2. Уравнение с
одним неизвестным выводилось в [1], [2], но здесь представлен поправленный вариант с учетом обнаруженных
дефектов коэффициентов в N7, N8 и с добавлением члена N9.

Уравнение нелинейно-длинноволнового приближения получается, если отбросить члены N2–N9
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Здесь представлен вариант, применяемый в [4], где сделано преобразование x → cθx, v = θv. В дальнейшем
именно такие переменные и используются и предполагается, что такое же преобразование сделано и для урав-
нения (1.3). Но для расчетов более удобно представление этого уравнения в деформациях, вариант уравнения
Буссинеска:
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Внимание в данной работе будет сосредоточено на численном исследовании решений типа бездиссипатив-
ных структур разрывов. В теории бездиссипативных структур разрывов [5] под структурами разрывов пони-
маются переходы между однородными или переодическими состояниями. Рассматриваются расширяющиеся
со временем структуры и локальные структуры. В контексте данной работы актуальны солитонные структуры,
представляющие собой расширяющиеся со временем волновые зоны, на границах которых первая волна со
временем стремится к уединенной, структуры с расширяющейся волновой зоной хаотического типа, структу-
ры с излучаемой волной, в которых есть локальный переход между однородным и периодическим состоянием.
Одна из целей работы — проверка возможности применения ранее разработанной методики расчета широко-
го класса уравнений в частных производных [6], основанной на применении центральных разностей при ап-
проксимации пространственных производных и метода Рунге–Кутты четвертого порядка при аппроксимации
временных, а также разработка методов программирования, позволяющих применять программы как универ-
сальные для расчета нескольких уравнений.

2. ЧИСЛЕННОЕ РЕШЕНИЕ УРАВНЕНИЙ МАГНИТОУПРУГОСТИ

2.1. Приближение уравнением Буссинеска

Вначале рассмотрим уравнение (1.5). Для него существуют аналитические решения типа уединенных волн
[1], [2], [4]:
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Среди них есть дозвуковые уединенные волны с V < 1, имеющие вид впадины, и сверхзвуковые с V > 1, имею-
щие вид горба.

Ранее была исследована линейная устойчивость уединенных волн методом функции Эванса (см., напри-
мер, [4]) для сверхзвуковых уединенных волн. Введем обозначения: s1 = (cT /cθ)2, s2 = (cϕ/cθ)2, 𝒱 = V2. Для
сверхзвуковых волн выделяются два случая: s2 > 𝒱 > 1 > s1 и s2 > 𝒱 > s1 > 1 (или s1 > 𝒱 > s2 > 1 ). В первом
случае есть уединенные волны малой амплитуды при𝒱 → 1, они устойчивы, при увеличении квадрата скоро-
сти до некоторого значения𝒱2 < s2 (и соответственно увеличения амплитуды) они становятся неустойчивыми.
Неустойчивость сохраняется вплоть до𝒱 = s2. Во втором случае уединенных волн сколь угодно малой ампли-
туды нет, а на обоих границах области допустимых значений𝒱 длина уединенной волны стремится к нулю, т.е.
волны не описываются слабонелинейно-длинноволновым приближением, использованным при выводе урав-
нения (1.5). Возле этих границ волны неустойчивы, а на среднем интервале𝒱1 < 𝒱 < 𝒱2 волны устойчивы. Для
дозвуковых волн выделяются аналогичные два случая: s2 > s1 > 1 > 𝒱 и s2 > 1 > s1 > 𝒱. В первом случае есть
устойчивые волны сколь угодно малой амплитуды при𝒱 → 1 и неустойчивые при𝒱 <𝒲1. Во втором случае
есть устойчивый интервал𝒲1 > 𝒱 >𝒲2. Поэтому при s2 > s1 > 1 существуют и дозвуковые и сверхзвуковые
уединенные волны, что может приводить к появлению солитонных структур разрывов с уединенными волна-
ми обоего типа. Отметим, что в силу симметрии расположения физических коэффициентов в уравнении (1.5)
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величины s1 и s2 можно переставить местами, результаты будут одними и теми же. Подразумевается, что V мо-
жет принимать как положительные, так и отрицательные значения, в частности при s2 > s1 > 1 дозвуковые
уединенные волны существуют при −1 < V < 1.

В теории разрывов рассматриваются полные уравнения и упрощенные, гиперболические, получаемые из
полных отбрасыванием диссипативных членов [7]. Упрощенные уравнения содержат разрывы, а решения пол-
ных уравнений, описывающие плавные переходы между однородными состояниями, называются структурами
разрывов. В теории бездиссипативных разрывов эти понятия расширяются [5]. В качестве однородных состоя-
ний могут рассматриваться еще и периодические или стохастические состояния, упрощенные уравнения полу-
чаются отбрасыванием дисперсионных членов, в качестве упрощенных уравнений могут также использоваться
усредненные уравнения волновых зон. Вводятся также понятие расширяющейся со временем структуры раз-
рыва, которая описывает переход между однородными состояниями, и понятие локальной структуры разрыва,
которая может быть элементом расширяющейся структуры.

Формально уединенная волна здесь может рассматриваться как структура разрыва типа перехода между
однородными состояниями для упрощенного гиперболического уравнения vtt − vxx = 0. Уединенной волне,
представляющей собой локальный горб или впадину величины u, соответствует плавный переход между одно-
родными состояниями v1 и v2. Однако постановка задачи с таким разрывом не будет удовлетворять условию
эволюционности [7], согласно которому число условий на разрыве должно быть равно числу уходящих харак-
теристик плюс одно условие. С математической точки зрения это условие корректности постановки задачи
при наличии разрыва. Здесь две уходящие характеристики и только одно условие на разрыве V = V(v1, v2). По-
этому всюду в дальнейшем будут рассматриваться разрывы и структуры разрывов для упрощенного уравнения
utt − uxx − (cτu/cθ)2

xx = 0.
Далее рассматривается эволюция начальных данных типа сглаженной ступеньки с целью исследования

недиссипативных структур разрывов. Согласно теории бездиссипативных структур разрывов эти структуры ас-
социированы с ветвями дисперсионного соотношения, проходящими через начало координат [5]. Дисперси-
онное соотношение уравнения (1.5), линеаризованного относительно состояния u = u0 имеет вид:

k2 − ω2 + Ak4 + Bω4 +Cω2k2 − 2Dk2u0 = 0, (2.2)

ω
2 =
−(Ck2 − 1) ±

√︀
(Ck2 − 1)2 − 4B[Ak4 + (1 − 2Du0)k2]

2B
.

Здесь A, B, C — коэффициенты при производных uxxxx, utttt, uttxx в уравнении (1.5), а D — коэффициент при
нелинейном члене (u2)xx. Исследование дисперсионного соотношения ω = ω(k) для данного уравнения пока-
зывает наличие двух ветвей. Имеется ветвь, у которой ω(0) ̸= 0, и ветвь у которой ω(0) = 0, структуры разрывов
ассоциированы с этой ветвью. Для того, чтобы выделить структуру, движущуюся вправо, использовалась фор-
мула

u = −(u2 − u1) tanh[(x − Vt)r]/2 + (u2 + u1)/2, V = 1 − D(u2 + u1)/2, (2.3)

где u1 — состояние при x → +∞, u2 — состояние при x → −∞. Формула для скорости выводится следующим
образом. Рассмотрим наиболее простое длинноволновое приближение уравнения (1.5): utt − uxx + D(u2)xx = 0.
Выводится растяжением осей координат: t = t′/ϵ, x = x′/ϵ, ϵ, — некоторая малая величина. Члены порядка ϵ2

оставляем, члены порядка ϵ4 выбрасываем. Переходим в систему, движущуюся со скоростью единица, x′ = x− t.
В новой системе координат уравнение приобретает вид −2ux′t + D(u2)x′x′ = 0. Проинтегрируем это уравнение
по x′, получаем −2ut + D(u2)x′ = 0. Рассматриваем это уравнение как закон сохранения и находим скорость раз-
рыва V ′ = −D(u2+u1)/2. Переходим в исходную систему координат и получаем искомую формулу для скорости.
В случае включения вязкости можно вывести уравнения Бюргерса и Кортевега–Бюргерса, возникает диссипа-
тивная структура разрыва и формула для скорости становится точной. Диссипацию можно включить, добавив
в правую часть уравнения (1.5) член uxxt с положительным коэффициентом. Скорость недиссипативной струк-
туры, описываемой уравнением Кортевега–де Вриза, отличается от скорости диссипативной структуры, но в
случае малых амплитуд они близки к характеристической скорости. Альтернативный подход: у полученного
уравнения характеристическая скорость равна −Du. Логично для скорости скачка брать среднее значение.

Для начального скачка небольшой амплитуды при использовании формулы (2.3) практически наблюдаются
только волны, движущиеся вправо. При увеличении амплитуды появляются и небольшие волны, движущие-
ся влево. В случае параметров, соответствующих наличию сверхзвуковых уединенных волн малой амплитуды,
как и предполагалось, при небольшой амплитуде начального разрыва возникает солитонная структура, а при
увеличении амплитуды происходит рост первой волны в солитонной структуре, приводящий к ее опрокиды-
ванию с последующей остановкой расчета. В случае значений параметров, когда существуют дозвуковые уеди-
ненные волны малой амплитуды возможна ситуация, когда при небольшой амплитуде возникает солитонная
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структура с дозвуковой уединенной волной, при увеличении амплитуды структура приобретает двухволновой
хаотический характер, а при дальнейшем увеличении возникает солитонная структура с уединенной волной
сверхзвукового типа. При дальнейшем увеличении происходит рост и опрокидывание первой волны солитон-
ной структуры. Это согласуется с результатами исследования уединенных волн, согласно которому при данном
наборе физических констант существуют как дозвуковые, так и сверхзвуковые уединенные волны, но сверх-
звуковых волн малой амплитуды нет. На фиг. 1а показана формирующаяся структура с дозвуковой уединен-
ной волной на границе, a = (u2 − u1) = 0.05, u1 = 0, t = 1000. Виды переходной нестационарной структуры
разнообразны. На фиг. 1б показана структура вблизи перехода от солитонных структур к неупорядоченным,
a = 0.095, t = 4000. Она сильно хаотична. Видно, что здесь еще присутствуют две дозвуковые уединенные вол-
ны. Одна из них полностью отделилась от структуры разрыва. На фиг. 1в показана двухволновая хаотическая
структура, a = 0.1, t = 4000. Она сравнительно упорядоченная. Здесь имеется локализованный скачок, резкое
увеличение величины u, от которого излучаются волны вправо и влево. Скорость волны большой амплитуды в
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области справа совпадает со скоростью скачка, скорость волны малой амплитуды, излучаемой вправо не сов-
падает со скоростью скачка. На фиг. 1г, показана структура, переходная к сверхзвуковой солитонной структуре,
a = 0.65, t = 500. С правой стороны волновая зона имеет солитонный вид, но слева виден резкий переход между
длинноволновым и коротковолновым участком. Со временем в этой области возникает хаос, самофокусиров-
ка волн, приводящая к остановке расчета из-за роста их амплитуды. Качественно процесс эволюции решения
можно интерпретировать как опрокидывание огибающей. Можно сделать вывод о том, что решение хаотиче-
ского типа возникает не в связи с не существованием или неустойчивостью уединенной волны, а в связи с не
существованием или неустойчивостью решений усредненной системы уравнений, описывающих волновую зо-
ну. На фиг. 2a показана не сформировавшаяся структура со сверхзвуковой неустойчивой уединенной волной,
a = 2, t = 5 — штриховая линия, t = 7 — сплошная линия. Амплитуда волн здесь быстро нарастает, расчет
завершается аварийной остановкой из-за опрокидывания волны. На фиг. 2б показано как формируется про-
стая волна, a = −0.5, t = 50 — штриховая линия, t = 60 — сплошная линия, но одновременно в результате
эволюции начальных данных возникла и изолированная одиночная неустойчивая дозвуковая уединенная вол-
на с растущей амплитудой, данный расчет завершается аварийной остановкой. Таким образом, неожиданное
возникновение неустойчивой уединенной волны может приводить к проблемам в расчетах. При a = −0.25 фор-
мируется простая волна и остановки не происходит. Во всех этих расчетах r = 0.5, а набор констант следующий:
cT = 2, cϕ = 1.0488, I = α = cθ = cτ = 1, т.е. рассматривается случай s2 > s1 > 1.

Разработанная в [5] методика прогноза возможного типа решений пригодна и в данном случае. Рассматри-
ваются пересечения с дисперсионной ветвью прямой V = ω/k при k > 0 для состояний до и после разрыва,
т.е. состояний 1 и 2. В случае наличия пересечения может возникнуть солитонная структура или структура с
излучаемой волной. При 0 < a < a* в рассмотренном выше случае есть пересечение для состояния 1 и может
возникнуть структура с волной, излучаемой вправо. При a > a* есть пересечение для состояния 2, может воз-
никнуть структура с волной, излучаемой влево. Здесь критическое значение a* ≈ 0.0976 при V = 1 + a/2. При
a → a* длины излучаемых линейных волн стремятся к нулю. Заметим, что для решений, показанных фиг. 1б
и фиг. 1в, значения a близки к критическому, причем в первом случаев a < a*, а во втором a > a*, эти решения
существенно различаются.

При s1 < 1 < s2, а также при s1 = 1 < s2, при небольших амплитудах разрыва возникает солитонная структура
со сверхзвуковой уединенной волной. При увеличении амплитуды возникает решение, аналогичное, показан-
ному на фиг. 1в, со временем хаотизация и остановка расчета. При дальнейшем увеличении амплитуды, как и
предполагалось, возникает неустойчивость сверхзвуковой уединенной волны, решение аналогично показанно-
му на фиг. 1г, остановка расчета за короткое время. При этом есть пересечение прямой V = ω/k с дисперсионной
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кривой для состояния 2 при всех значениях a > 0 и нет пересечения для состояния 1. Соответственно структуры
с дозвуковой уединенной волной отсутствуют.

Для выявления случаев некорректности уравнения (1.5) делается его линеаризация и применяется крите-
рий Петровского, позволяющий выявить отсутствие непрерывной зависимости решений от начальных данных.
На основе анализа дисперсионного соотношения можно заключить что линеаризованное уравнение (1.5) все-
гда корректно при значениях коэффициентов, определяемых набором физических констант. Согласно крите-
рию Петровского [8] уравнение корректно, если можно указать b такое, что при Im(ω) > b значение Imk(ω) ̸= 0.
При больших значениях b значение k(ω) определяется в основном членами с производными наиболее высокого
порядка [5], Ak4+Bω4+Cω2k2 ≈ 0. Поэтому условие корректности сводится к положительности дискриминанта
квадратного трехчлена: C2 > 4AB. При подстановке в это условие физических констант оно сводится к условию
(c2
ϕ+c2

T )2 > 4c2
ϕc2

T , что верно всегда при cϕ ̸= cT . Случай равенства требует специального анализа. Но это условие,
очевидно, не всегда выполнено при произвольных значениях коэффициентов A, B, C.

Проводился также расчет уравнения в перемещениях, т.е. уравнения (1.4). Для совместимости начальных
данных с данными для уравнения (1.5) нужно провести интегрирование:

v =
∫︁ x

x1

u(ξ)dξ + c1,

здесь x1 — значение x на границе расчетной области, c1 — константа интегрирования. Можно рассматривать
семейство начальных данных для уравнения перемещениях, но c1 не существенная константа, определяющая
сдвиг. Данные для vt, vtt, vttt находятся аналогичным интегрированием данных для ut, utt, uttt или дифферен-
цированием v. Результаты, полученные обоими способами для величины u оказались одинаковыми. Это был
необходимый этап для перехода к добавлению других членов уравнения (1.3).

2.2. Уточнения длинноволнового приближения

Была проведена серия пробных расчетов с начальными данными (2.1), cT = 2, cϕ = 1.0488, ρ = 1 при
V = 0.7071 с целью выяснения, как каждый из членов влияет на результат расчета. В случае уравнения (1.5)
это устойчивая уединенная волна. Тесты делались как с последовательным добавлением членов, так с каждым
членом отдельно.

Добавим в расчет член N2. Расчет проводился как для уравнения в перемещениях, т.е. для неизвестной v, так
и для уравнения в деформациях, т.е. для неизвестной u. Результаты были одинаковыми. Но было обнаружено,
что в случае использования начальных данных в виде уединенной волны уравнения (1.5) возможно опрокиды-
вание волны несмотря на то, что согласно решений уравнения (1.5) уединенная волна устойчива. Добавление
члена N2 приводит к тому, что появляется некорректность в случае увеличения значений u. Условие корректно-
сти теперь C2 > 4(A+2Eu0)B, здесь E — коэффициент при производной третьего порядка в члене N2. Это очевид-
но при рассмотрении уравнения в деформациях для неизвестной u, но не совсем очевидно при рассмотрении
равноценного уравнения в перемещениях для v. Численный эксперимент показывает в случае некорректно-
сти отсутствие сходимости и остановку расчета из-за роста амплитуды коротких волн как в случае уравнения в
деформациях, так и в случае уравнения в перемещениях. Добавление члена N3 также приводит к опрокидыва-
нию волны, не предсказываемому согласно (1.5), и изменению условия корректности: (C + 2Fu0)2 > 4AB, F —
коэффициент при смешанной производной в этом члене.

Члены N4–N9 имеют более высокие порядки малости. Для N4, N5, N6 возможен расчет как в перемещениях,
так и в деформациях, а для N7, N8, N9 — только в перемещениях. Были проведены эксперименты эволюции
начальных данных типа устойчивой уединенной волны с включением каждого члена отдельно. Они показали,
что члены N5 и N8 проблем не вызывают, члены N4, N6, N7 приводят к быстрой остановке расчета из-за роста
коротких волн, сходимость отсутствует. Поскольку для членов N4 и N6 это выявлялось как при расчете в пе-
ремещениях, так и в деформациях, можно предположить, что речь идет скорее о некорректности уравнений,
чем о численной неустойчивости. Поскольку неустойчивость численных схем часто связана с некорректно-
стью аппроксимирующих уравнений, получаемых с учетом схемных членов пропорциональных степеням про-
странственных и временных шагов, то отделить случаи численной неустойчивости от некорректности исходных
уравнений путем численного эксперимента сложно и нужно обращаться к математическому анализу. В данном
случае способы математического исследования корректности включения отдельных членов не очевидны, от-
метим только, что все члены, вызывающие проблемы, содержат множитель vxx. Возможно для оценки влияния
на корректность членов N4 и N6 может быть применено двукратное дифференцирование по x уравнения (1.3)
и линеаризация относительно состояния u = const и ux = const с сохранением только старших производных в
линейной части уравнения, подобно тому как для оценки влияния членов N1–N3 делалась линеаризация отно-
сительно состояния u = const.
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Во всех случаях при использовании начальных данных (2.1) для уединенных волн небольшой амплитуды
расчет выполнялся успешно и приводил к формированию со временем уединенной волны с измененным про-
филем.

2.3. Полная система уравнений

Расчеты проводились как для уравнений (1.3) так и для (1.1), (1.2). Для того, чтобы начальные данные были
совместимыми, нужно численно проинтегрировать уравнение (1.1)

ϕ3(x) =
∫︁ x

x1

[︂
µ + α

2α

(︂
1 + 2

∂v
∂x

)︂
∂2v
∂x2 −

ρ

2α
∂2v
∂t2 −

H2
1

8πα
∂2v
∂x2

]︂
dξ + c2.

При этом возникает вторая константа интегрирования c2. Наличие этой константы приводит к тому, что на-
чальным данным уравнения (1.3) соответствует семейство решений уравнений (1.1), (1.2). Численное инте-
грирование производится при t = 0 для нахождения ϕ3(x, 0), а также при t = τ, t = −τ для нахождения
ϕ3t = (ϕ3(x, τ)−ϕ3(x,−τ))/(2τ)+O(τ2). Уравнение (1.2) не инвариантно относительно сдвига по ϕ3. Поэтому, что-
бы избежать наличия колебаний для состояния 1, в случае расчета задачи о распаде разрыва константа должна
определяться так: c2 = (u1 + u2

1)/2.
В отличие от уравнения (1.3) для уравнений (1.1), (1.2) необходимые условия корректности понятны. Это —

условия положительности коэффициентов при пространственных производных второго порядка:

(µ + α)(1 + 2vx) − H2
1/(4π) > 0, (2.4)

1 + 2ϕ3x > 0. (2.5)

Действительно, продифференцируем по x уравнения (1.1), (1.2) по x, получим

ρ
∂2u
∂t2 =

(︂
(µ + α)(1 + 2u) −

H2
1

4π

)︂
∂2u
∂x2 − 2α

∂ f
∂x
+ 2(µ + α)

(︂
∂u
∂x

)︂2

,

I
∂2 f
∂t2 = (γ + ϵ)(1 + 2 f )

∂2 f
∂x2 + 2α

∂u
∂x
+ 2α

∂u2

∂x
− 4α

∂ f
∂x
+ 2(γ + ϵ)

(︂
∂ f
∂x

)︂2

, f =
∂ϕ3

∂x
.

Члены с производными второго порядка образуют здесь независимые квазилинейные волновые уравнения
(уравнения струны). Именно эти члены определяют корректность при применении критерия Петровского к
линеаризованным уравнениям. Из этого критерия следуют условия (2.4), (2.5). При невыполнении указанных
выше условий волновые уравнения становятся эллиптическими, т.е. неэволюционными.

Численный эксперимент для уравнений (1.1), (1.2) показал, что при использовании данных (2.1) при увели-
чении амплитуды волны нарушается условие (2.4) для дозвуковых уединенных волн, а в случае сверхзвуковых
нарушается условие (2.5). На начальных этапах расчета растущие коротковолновые колебания появляются ло-
кально, именно в областях некорректности. Это ведет к отсутствию сходимости и остановке расчета в случае
расчета эволюции начальных данных типа уединенной волны большой амплитуды. Таким образом, линейно
неустойчивых уединенных волн, имеющихся для уравнения (1.5), в случае полных уравнений обнаружено не
было. Но в связи с большим количеством параметров задачи и отсутствием аналитического решения это не
позволяет утверждать, что при всех значениях параметров уединенных волн, не приводящих к некорректно-
сти, уединенные волны устойчивы. Система (1.1), (1.2) может быть сделана корректной добавлением в правые
части диссипативных членов vtxx и ϕ3txx с некоторыми положительными коэффициентами. Некорректные об-
ласти заменятся областями с неустойчивыми состояниями. Расчеты с включением таких вязких членов были
проведены.

Аналогичные утверждения о не обнаружении структур с неустойчивыми уединенными волнами можно сде-
лать и относительно бездиссипативных структур разрывов, расчеты делались для уравнения (1.3). В случае
s1 > s2 > 1 при небольших амплитудах разрыва возникает структура с дозвуковой уединенной волной, фиг. 3а,
a = 0.025, ρ = 1, остальные параметры те же, что и в случае фиг. 1 и фиг. 2. При увеличении амплитуды возни-
кает структура с излучаемой вправо волной, фиг. 3б, a = 0.05. При дальнейшем увеличении амплитуды можно
найти ее приблизительное значение, при котором излучаемых волн нет, см. фиг. 3в, a = 0.1. При дальнейшем
увеличении амплитуды возникает структура с волной, излучаемой влево, см. фиг. 3г., a = 0.5. Графики соответ-
ствуют t = 4000, величина пространственного шага схемы h = 0.01. При дальнейшем увеличении амплитуды
возникает некорректная область, приводящая к остановке расчета. Структуры, показанные на фиг. 3б–г со вре-
менем становятся упорядоченными. Интересным фактом является то, что они содержат внутри себя скачок vxx

(или, что то же самое скачок ux), согласно теории разрывов — это слабый разрыв для гиперболической части
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уравнения (1.3), т.е. уравнения vtt − vxx +D(v2
x)x = 0. Введя величину q = vt это уравнение можно преобразовать к

системе: qt −ux+D(u2)x = 0, ut = qx. Под слабым разрывом понимается разрыв старших производных, входящих
в уравнения. В случае гиперболической системы слабый разрыв движется с характеристической скоростью.
В рассчитанных решениях имеются скачки ux и qt. На фиг. 3б,в,г, в заметны небольшие колебания вблизи сла-
бого разрыва. Это — схемная структура слабого разрыва, она показана на этих рисунках в увеличенном виде
в квадрате. Каждой точке в квадрате соответствует значение в узле сетки. Можно посчитать, что каждой от-
дельной волне соответствует примерно 7 узлов, это соотношение сохраняется и при измельчении сетки. При
измельчении пространственного шага амплитуда колебаний их длина и занимаемая ими область уменьшают-
ся и их можно рассмотреть только под “микроскопом”. В случае h = 0.0025 для вариантов расчета a = 0.05 и
a = 0.1 колебания практически не видны. При этом амплитуда скачка сохраняется. То есть сходимость расчета
есть. Для варианта, соответствующего фиг. 3г, эти колебания уже не видны и при h = 0.01, поэтому в квадрате
показана сама структура разрыва с излучаемой волной в крупном масштабе по горизонтали, слабый разрыв,
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т.е. излом графика, хорошо заметен. В работе [9] отмечалось что используемая численная схема для быстрых
магнитозвуковых волн в магнитной гидродинамике может создавать схемную солитонную структуру сильного
разрыва. В данном случае аналогичный эффект выявлен для слабого разрыва. Очевидно, колебания в схемной
структуре можно было бы убрать, добавив небольшую диссипацию.

Ранее [5] для систем обыкновенных дифференциальных уравнений бегущих волн четвертого порядка были
исследованы структуры типа перехода между однородным и периодическим состоянием, названные разры-
вом с излучением. При этом собственные значения для линеаризованной системы уравнений в точке равно-
весия, соответствующей однородному состоянию, обязательно были комплексными. Это было связано с тем,
что структура находилась как предел последовательности 1:1 мультисолитов, которые существуют только при
комплексных собственных значениях. В данном случае рассматриваются переходы между однородными со-
стояниями vx = const, см. фиг. 3в,г. Выявлен аналог структуры разрыва с излучением, но, судя по виду решения
(отсутствию пространственно затухающих волн), комплексных собственных значений для состояния 1 нет. Су-
ществование таких решений стало возможным из-за включения слабого разрыва. Разработанная в [5] методика
прогноза возможного типа решений пригодна и в данном случае. Рассматриваются пересечения с дисперсион-
ной ветвью прямой V = ω/k при k > 0 для состояний до и после разрыва. При включении членов N2 и N3
дисперсионное соотношение (2.2) модифицируется: A → A + 2Fu0, C → C + 2Eu0. Только эти члены уравне-
ния (1.3) влияют на дисперсионные свойства линейных волн. В случае наличия пересечения может возникнуть
структура с излучаемой волной. При 0 < a < a* есть пересечение для состояния 1 и должна возникать структура
с волной, излучаемой вправо. При a > a* есть пересечение для состояния 2, может возникнуть структура с из-
лучаемой влево волной. Здесь критическое значение a* ≈ 0.0976 при V = 1 + a/2. При a→ a* длина излучаемой
волны стремится к нулю. В случае уравнения (1.5) критическое значение такое же. Конечноразностная схема
“не видит” короткие волны, поэтому структура типа перехода между двумя однородными состояниями, т.е без
излучаемых волн, в расчетах наблюдается не только для критического значения, но для некоторой небольшой
его окрестности. Можно применять также алгоритмический подход поиска структуры разрыва путем сращи-
вания в некоторой точке решений, исходящих из двух точек достаточно удаленных от точки сращивания, при
этом варьируемые параметры решений здесь подбираются так, что эти решения стремятся к u1x + P1(x) и u2x
при x→ ±∞ или стремятся к u1x и u2x+ P2(x); P1(x), P2(x) — периодические функции. Алгоритм для поиска ло-
кальных структур разрывов методом вариации параметров решений уравнений бегущих волн описан в [5], но
там рассматриваются возмущения относительно точек равновесия. Аналогичный метод может быть применен
здесь.

В случае s2 > 1 > s1 при умеренных амплитудах разрыва возникает солитонная структура со сверхзвуковой
уединенной волной, см. фиг. 4, сплошная линия, cϕ = 0.81, cT = 2, a = 0.5, t = 200. При увеличении амплитуды
разрыва возникает некорректная область, приводящая к остановке расчета. График качественно не отличается
от аналогичного решения уравнения (1.5), см. фиг. 4, штриховая линия. Но в случае уравнения (1.5) при уве-
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личении амплитуды разрыва возникает хаотизация волновой зоны, аналогичная показанной на фиг. 1г, а при
дальнейшем увеличении амплитуды разрыва возникает неустойчивость уединенной волны, аналогичная пока-
занной на фиг. 2а, также приводящие к остановке расчета.

При s2 > 1, s1 = 1, cϕ = 2 бездиссипативные структуры при u1 = 0 не обнаружены. Со временем про-
исходит опрокидывание волны при всех значениях a. Это согласуется с анализом на основе дисперсионного
соотношения: здесь есть две приходящие характеристики упрощенного уравнения, ассоциированные с волна-
ми, движущимися вправо, для обеих сторон отсутствуют пересечения. В стандартных случаях, рассмотренных
в [5], пересечение есть. Бездиссипативная структура в стандартном случае должна содержать хотя бы одну излу-
чаемую волну. Здесь можно ожидать хаос, блоуап или опрокидывание, что и наблюдается. Поэтому структуры
разрывов можно получить в этом случае только при наличии диссипации. Напомним, что для уравнения (1.5)
при s1 = 1 для состояния 2 пересечение было и выявлялись структуры со сверхзвуковой уединенной волной.
Был проведен также расчет для s2 < 1. При умеренных амплитудах разрыва обнаружена структура с излучаемой
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волной с левой стороны и слабым разрывом, фиг. 5а, a = 0.1 t = 2000, cϕ = 0.1. При увеличении амплитуды
происходит остановка расчета из-за некорректности. Это согласуется с анализом дисперсионного соотноше-
ния, для состояния 2 пересечение есть. Для сравнения был проведен также расчет при тех же параметрах для
уравнения (1.5). Возникло решение с аналогом уединенной волны огибающей в области слева. фиг. 5б, t = 14.
Со временем здесь происходит остановка расчета из-за роста амплитуды огибающей. При этом для состояния 2
есть пересечение с действительной частью дисперсионной ветви, но само значение ω для точки пересечения
комплексное. Такие значительные отличия в решениях уравнений (1.3) и (1.5) для случая s1 = 1 связаны с тем,
что при a = 0 дисперсионная кривая представляет собой прямую линию. Длинноволновое приближение хотя
формально остается правильным, но не описывает рассматриваемые решения уравнения (1.3) даже в случае
малых амплитуд разрыва, поскольку в них возникают короткие волны. Однако выбрав u1 ̸= 0 можно изменить
дисперсионное соотношение и получить решения с бездиссипативными структурами. При cϕ = 0.1 < 1 обна-
ружены солитонные структуры со сверхзвуковой уединенной волной, фиг. 5в, u1 = 0.1, u2 = 0.2, t = 400. При
увеличении амплитуды разрыва с сохранением u1 они замещаются структурами с излучением с левой стороны
и слабым разрывом, а при дальнейшем увеличении амплитуды возникает остановка из-за некорректности. При
cϕ = 2 > 1 обнаружены солитонные структуры с дозвуковой уединенной волной, фиг. 5г, u1 = 0.2, u2 = 0.25,
t = 1000. При увеличении амплитуды происходит опрокидывание. Рассматриваемые структуры разрывов и
уединенные волны малой амплитуды после подстановки u → u + u1,2 могут быть описаны уравнением (1.5) с
измененными коэффициентами

utt − (1 − 2Du1,2)uxx + (A + 2Fu1,2)uxxxx + Butttt + (C + 2Eu1,2)uttxx + D(u2)xx = 0.

У всех рассмотренных уравнений скорость распространения волн конечна. Поэтому они относятся к классу
уравнений с исчезающей дисперсией коротких волн, рассмотренных в работах [6], [9], некоторые начальные
данные приводят к опрокидыванию волны, требуется включение вязкости или рассмотрение обобщенного ре-
шения. Добавление указанных выше диссипативных членов в уравнения (1.1), (1.2) позволяет получить клас-
сические решения. При этом добавление членов utxx или vtxx с положительными коэффициентами в правую
часть уравнений (1.5) или (1.3) не обязательно решает проблему при любых начальных данных, хотя и создает
вязкость, позволяющую получать решения в виде стационарных структур разрывов, поскольку члены с произ-
водными четвертого порядка при этом доминируют в дисперсионном соотношении. Отметим, что уравнения
не консервативны, поэтому подход к получению обобщенного решения через законы сохранения здесь не уда-
ется.

3. ПРИМЕНЯЕМЫЙ ЧИСЛЕННЫЙ МЕТОД И ОБЩИЙ ПОДХОД
К ЧИСЛЕННОМУ РЕШЕНИЮ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ

Рассчитываемая система уравнений сводится к виду

Wt = F(t, x,W,Wx,Wxx, ...).

Компоненты вектора W в случае уравнений (1.5), (1.3), (1.1), (1.2) следующие: (u, ut, utt, uttt), (v, vt, utt, vttt),
(v, vt,ϕ3,ϕ3t). Временные производные здесь аппроксимировались методом Рунге–Кутты четвертого порядка, а
пространственные производные — методом центральных разностей. Достигнута аппроксимация второго по-
рядка по пространству и четвертого порядка по времени. В работе [6] на примере обобщенного уравнения
переноса wt + Cw(m) = 0 с пространственной производной произвольного порядка m показано, что в случае
корректного уравнения имеется условная устойчивость τ < chm, кореллирующая в недиссипативном случае с
показателем роста скорости коротких волн при k → ∞ согласно дисперсионному соотношению. Через h обо-
значен пространственный шаг. Схемная вязкость (диссипация), связанная с аппроксимацией недиссипатив-
ных членов, т.е. членов с производной нечетного порядка, имеет пятый порядок малости. Можно применять
метод Рунге–Кутты третьего порядка, но схемная диссипация у него имеет третий порядок малости. Возможно
применение и метода второго порядка, у него схемная вязкость имеет тоже третий порядок малости, но она
не корректная, она ведет не к диссипации возмущений, а к их росту. Сходимость достигается, но это ведет к
неестественному условию устойчивости, хуже, чем то которое можно предполагать из дисперсионного соотно-
шения. Продолжительные расчеты ведут к аварийной остановке из-за роста возмущений. Наиболее неудобно
применять метод первого порядка, где некорректная схемная вязкость, порождаемая аппроксимацией недис-
сипативных членов, имеет также первый порядок. При этом стоит отметить, что недостатки методов перво-
го и второго порядка устраняются, если в уравнении есть диссипативные члены. На этом основана методика
коррекции численной схемы с добавлением диссипативных членов, пропорциональных некоторым степеням
пространственных и временных шагов [6].
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В связи с особенностями метода Рунге–Кутты достаточно написать одну основную программу, где реали-
зуется этот метод для временного шага, а к ней добавить вспомогательную подпрограмму, осуществляющую
следующий расчет:

W(t + τ1) = F(t + τ2, x,W(t + τ2),W(t + τ2)x,W(t + τ2)xx, ...)τ1.

Здесь вместо неизвестных функций W подразумеваются массивы {Wk}, k = 1, ...,N, возникающие при дискре-
тизация по x, а производные по пространству заменяются центральными разностными аппроксимациями, τ1,
τ2 промежуточные или окончательные значения шагов, определяемые в основной программе согласно исполь-
зуемому методу Рунге–Кутты. Поэтому, если есть такая вспомогательная подпрограмма для некоторой системы
уравнений, то ее можно применять и с различными вариантами метода Рунге–Кутты в основной программе.
Для методов 1–4 порядка на каждом временном шаге эта подпрограмма вызывается столько раз, каков порядок
метода. Таким образом, чтобы перейти от расчета одного уравнения к другому достаточно изменить операто-
ры подпрограммы. Это в принципе можно делать методами автоматического программирования, воспользо-
вавшись например пакетом Mathematica, где есть возможность преобразования формул в фортран-форму и
си-форму с последующим присоединением подпрограмм для расчета аппроксимации пространственных про-
изводных. Но вручную это делается более аккуратно, поскольку позволяет использовать более компактные раз-
ностные аппроксимации. В данном случае так и делалось. Такой подход позволил достаточно быстро провести
расчеты для различных систем уравнений. Помимо описанных здесь уравнений этим методом ранее проводи-
лись расчеты уравнений волн в трубах с упругими стенками [6] и уравнений электромагнитной гидродинами-
ки [9].

Выше с математической точки зрения рассматривались задачи Коши, т.е. задачи для бесконечной области.
Она моделировалась как краевая задача в достаточно протяженной области. Значения в граничных узлах сетки
для уравнения (1.5) определялись так: u1 = u2 = Ul, uN−1 = uN = Ur. Математически это означает, что на границе
аппроксимированы условия u = Ul или u = Ur , а ux = 0. Для уравнения (1.3) они определялись так: v1 =

= v3 − 2(v4 − v3)h, v2 = v3 − (v4 − v3)h, vN = vN−2 + 2(vN−2 − vN−3)h, vN−1 = vN−2 + (vN−2 − vN−3)h. Математически это
означает, что vx = vxx = 0. Но этот вариант постановки граничных условий можно было использовать и для (1.5).
Аналогичным образом делалось и для уравнений (1.1), (1.2), но там достаточно определить значение v в одном
граничном узле, но требуется еще определять и значение ϕ3.

Поскольку для рассматриваемых уравнений скорость распространения волн конечная, то использовалось
условие устойчивости, соответствующее классическому условию Куранта: τ < ch.

4. ЗАКЛЮЧЕНИЕ

Таким образом, проведенные расчеты показали эффективность используемого численного метода для рас-
чета широкого класса уравнений и соответствие полученных результатов теории бездиссипативных структур
разрывов. Для приближения уравнением Буссинеска расчеты выявили, что в зависимости от амплитуды раз-
рыва возможны структуры как с дозвуковой, так и со сверхзвуковой уединенной волной, что согласуется с ранее
проведенными исследованиями уединенных волн. При этом есть еще промежуточный тип решений с неупоря-
доченной двухволновой структурой. Расчеты показали, что результаты, получаемые на основе слабонелинейно-
длинноволнового приближения для волн большой амплитуды могут существенно отличаться от результатов для
полных уравнений. Для полных уравнений выявлены ранее не встречавшиеся структуры с излучаемой волной,
содержащие внутри себя разрыв. Исследованы условия корректности уравнений. Есть существенные отличия в
условиях корректности слабонелинейных и полных уравнений, причем при некоторых преобразованных вари-
антах полных уравнений определение условий некорректности на основе математического анализа может быть
затруднено. В работе [6] для обобщенного уравнения переноса с пространственной производной произвольно-
го порядка (в том числе и с производной четного порядка, приводящей в зависимости от знака коэффициента
при ней к корректной или некорректной диссипации) было показано что в случае применения методов Рунге–
Кутты в корректном случае всегда имеется устойчивость и соответственно сходимость расчетов при соответ-
ствующем выборе значений для временного и пространственного шага на условия устойчивости, связанного
с дисперсионным соотношением. Можно предполагать, что и в более общем случае невозможность достичь
устойчивости и сходимости при расчете можно рассматривать как признак некорректности уравнений. Прове-
денные здесь расчеты не противоречат этому предположению.
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Abstract. Numerical solutions of magnetoelasticity equations are considered. A numerical scheme based
on central differences for spatial derivatives and the fourth-order Runge-Kutta method for time derivatives
is used. The initial data are solitary wave and smoothed step data (problem of discontinuity decay). The
study is carried out from simpler equations to more complex ones. New types of discontinuity structures are
identified, and the conditions for the correctness of the equations are investigated.
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