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Рассмотрена двумерная среда, в которой поля описываются уравнением Гельмгольца. Изучена линеаризован-
ная постановка задачи, которая в итоге сводится к восстановлению неизвестной правой части неоднородного
уравнения Гельмгольца в бесконечной полосе. Указанная правая часть в данной работе берется в виде суммы
дельта-функций, которые можно интерпретировать как суммарные проводимости тонких слоев. В качестве
информации для решения обратной задачи используются значения решения уравнения Гельмгольца и нор-
мальной производной решения на границе полосы для нескольких значений параметра в уравнении Гельм-
гольца. Эти данные можно интерпретировать как значения напряженностей электрического и магнитного
полей на границе полосы для конечного набора частот. С помощью разложения в ряды Фурье получено ин-
тегральное уравнение, связывающее искомые величины с данными для решения обратной задачи. При ис-
пользовании преобразования Фурье установлены условия однозначности решения обратной задачи. Наряду
с этим даны примеры многозначности решения обратной задачи в неожиданных ситуациях. Библ. 12.
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1. ВВЕДЕНИЕ

Предлагаемая работа является продолжением статьи [1]. В той статье разобран случай двухслойной среды.
Теперь удалось получить исчерпывающие результаты для n-слойной среды, n ⩾ 1, в том числе уточнить резуль-
таты для n = 2.

Рассматривается уравнение Гельмгольца

∆u + µσ(x, y)u ≡
∂2u
∂x2 +

∂2u
∂y2 + µσ(x, y)u = 0, (1)

в бесконечной полосе D = {(x, y) : −∞ < x < ∞, 0 < y < 1}.
Пусть решение u(x, y, µ) уравнения (1) удовлетворяет граничным условиям

u(x, y = 1, µ) = 0;
∂u
∂y

(x, y = 0, µ) = −1. (2)

Пусть параметр µи коэффициент σ(x, y) из (1) таковы, что решение граничной задачи (1), (2) – функция
u(x, y, µ) — существует и единственно. Точные условия на µ и σ будут указаны ниже.

Определение 1. Прямой задачей для уравнения (1) при условиях (2) назовем задачу нахождения функции

ϕ(x, µ) = u(x, y = 0, µ). (3)

Определение 2. Обратной задачей для уравнения (1) при условиях (2) назовем задачу определения коэффи-
циента σ(x, y) по функции ϕ(x, µ) из (3).

В приложениях, например в электроразведке [2], коэффициент σ(x, y) из (1) характеризует строение Земли,
параметр µ имеет смысл частоты зондирования, функции u(x, y = 0, µ) ∂u

∂y (x, y = 0, µ) выражаются через значения
напряженностей электрического и магнитного полей на поверхности среды.

В настоящей работе рассматривается ситуация, когда функция ϕ(x, µ) из (3) известна для конечного набора
частот µ: µ ∈ {µ1, µ2, . . . , µn}. Такое исследование имеет смысл не только для тех случаев, когда функция ϕ(x, µ)
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измеряется на конечном наборе частот. Пусть функция ϕ(x, µ) известна для всех µ на некотором отрезке, но ее
можно аппроксимировать в пределах точности измерений по значениям ϕ(x, µi), i = 1, 2, . . . , k. Понятно, что эти
k функций одной переменной x несут такую же информацию о коэффициенте σ(x, y), что и вся функция ϕ(x, µ)
двух переменных.

Обратную задачу будем решать в линейном приближении. Процедура линеаризации заключается в следую-
щем (см. [3], [1]).

Предполагаем, что коэффициент σ(x, y) = σ0 + γ(x, y), где
⃦⃦
γ(x, y)

⃦⃦
<< ‖σ0‖. Введем в систему (1), (2) новый

параметр ε и разложим решение u(x, y, µ, ε)в ряд по этому параметру: u = u0 + εu1 + ε
2u2 + . . .

∆u + µ(σ0 + εγ(x, y))u = 0,

ε
0 : ∆u0 + µσ0u0 = 0, u0| y=1 = 0;

du0

dy

⃒⃒⃒⃒
y=0
= −1;

ε
1 : ∆u1 + µσ0u1 = −µu0γ(x, y), u1|y=1 = 0;

∂u1

∂y

⃒⃒⃒⃒
y=0
= 0;

· · ·

ε
n : ∆un + µσ0un = −µun−1γ(x, y), un|y=1 = 0;

∂un

∂y

⃒⃒⃒⃒
y=0
= 0.

Удержим в разложении два слагаемых: u ≈ u0 + εu1, при этом ε считаем равным 1. Для сокращения записей
обозначим w = u0, v = u1. Тогда u = w + v, где

d2w
dy2 + µσ0w = 0, w| y=1 = 0;

dw
dy

⃒⃒⃒⃒
y=0
= −1, (4)

∆v + µσ0v = −µw(y, µ)γ(x, y), v|y=1 = 0;
∂v
∂y

⃒⃒⃒⃒
y=0
= 0. (5)

По аналогии с определениями 1 и 2 назовем прямой задачей для системы (4), (5) нахождение функции ψ(x, µ) =
= u(x, y = 0, µ), а обратной задачей — определение коэффициента γ(x, y) из (5) по функции ψ(x, µ).

2. РЕШЕНИЕ ПРЯМОЙ ЗАДАЧИ

Конкретизируем вид коэффициента γ(x, y) из (5):

γ(x, y) =
n∑︁

i=1

αi(x)δ(y − bi), (6)

где αi(x) — ограниченные, бесконечно дифференцируемые функции, δ(t) — дельта-функция Дирака

(
∞∫︀
−∞

δ(t) f (t)dt = f (0)) (см. [4]).

Коэффициент (6) моделирует ситуацию, когда на глубинах bi лежат тонкие слои с суммарной проводимо-
стью αi(x). Альтернативой “тонкому” слою служит “мощный” слой [5]. В этом случае слой характеризуется
двумя границами b−i < y < b+i и проводимостью γ(x, y) = τi(x). Суммарная проводимость αi(x) = (b+i − b−i )τi(x).

Замечание 1. Понятие тонкого слоя возникло в геоэлектрике вынужденно – для тех случаев, когда точности
измерений не хватает для определения толщины слоя.

Сравнительно недавно появился новый объект – двумерные материалы – структуры, в которых есть пленки
толщиной в один атом (графен, борофен и многие другие) [6], [7]. Модель с тонкими слоями описывает поля
и в таких структурах. Нам будет удобней запись уравнения (5), которая явно не содержит дельта-функции.При
этом примем, что параметр µ = −η, где η > 0. Кроме этого учтем, что функция w из (4) не зависит от переменной
x и выражается формулой

w(y, η) =
sh(
√
σ0η(1 − y))

√
σ0ηch(

√
σ0η)

,

∆v − ησ0v = 0, 0 < y < 1, y ̸= bi, i = 1, 2, . . . , n,

v| y=1 = 0,
∂v
∂y

⃒⃒⃒⃒
y=0
= 0, [v]

⃒⃒
y=bi = 0,

[︂
∂v
∂y

]︂ ⃒⃒
y=bi = ηw(bi, η)αi(x).
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Для сокращения записей уберем из правых частей условий сопряжений на внутренних границах bi постоянный
множитель η

√
σ0ηch(

√
σ0η) . Тогда задача запишется в следующем виде:

∆v − ησ0v = 0, 0 < y < 1, y ̸= bi, i = 1, 2, . . . , n,

v| y=1 = 0,
∂v
∂y

⃒⃒⃒⃒
y=0
= 0, [v]

⃒⃒
y=bi = 0,

[︂
∂v
∂y

]︂ ⃒⃒
y=bi = sh(

√
σ0η(1 − bi))αi(x).

(7)

Сформулируем для задачи (7) теорему существования и единственности решения v(x, y, η) [8], [9].
Теорема 1. Пусть αi(x), i = 1, 2, . . . , n — ограниченные, бесконечно дифференцируемые функции с ограниченными

производными. Пусть 0 < b1 < . . . < bn < 1. Тогда при каждом η ⩾ 0 ограниченное решение задачи (7) существует
и единственно. При этом решение v(x, y, η)является непрерывной функцией в области D̄ = {(x, y): −∞ < x < ∞,
0 ⩽ y ⩽ 1} и бесконечно дифференцируемой функцией в областях D̄1 = {(x, y): −∞ < x < ∞, 0 ⩽ y ⩽ b1}, D̄i = {(x, y):
−∞ < x < ∞, bi−1 ⩽ y ⩽ bi}, i = 1, 2, . . . , n, D̄n+1 = {(x, y): −∞ < x < ∞, bn ⩽ y ⩽ 1}.

Определение 3. Прямой задачей для системы (7) назовем задачу определения функций

ψ(x, η) = v(x, y = 0, η). (8)

При этом коэффициент (число) σ0, функции αi(x), числа bi, i = 1, 2, . . . , n, из (7) считаются известными.
Замечание 2. Функции ϕ,ψ из определений 1, 3 связаны соотношениями

ϕ(x,−η) =
sh(
√
σ0η)

√
σ0ηch(

√
σ0η)

+
ηψ(x, η)

√
σ0ηch(

√
σ0η)
,

т.е. легко пересчитываются одна в другую (величины σ0, η считаются известными).
Из теоремы 1 следует, что функция ψ(x, η) из (8) является бесконечно дифференцируемой функцией пере-

менной x.
Решение прямой задачи для системы (7) получено в работе [1]. Приводим его:

ψ(x, η) =

∞∫︁
−∞

n∑︁
j=1

K(x − t, b j, η)α j(t)dt, (9)

где

K(x, b, η) = −sh((1 − b)
√
ησ0)

∞∑︁
n=0

cos(λnb) exp(−
√︀
λ2

n + ησ0 |x|)√︀
λ2

n + ησ0
, λn = π/2 + πn, n = 0, 1, 2, . . .

3. РЕШЕНИЕ ОБРАТНЫХ ЗАДАЧ

Определение 4. Обратной задачей № 1 для системы (7) назовем задачу нахождения функций α j(x),
j = 1, 2, . . . , n, по функциям ψ(x, η = ηl), l = 1, 2, . . . ,N, из (8). При этом числа b j (глубины залегания слоев)
считаются известными.

Следуя [1], ищем решение обратной задачи в классе функций L̃(∞)
1 (−∞,∞) — функции вида: α(x) = β(x)+T (x),

где β(x) — бесконечно дифференцируемая, ограниченная вместе с производными функция, принадлежащая

L1(−∞,∞), т.е.
∞∫︀
−∞

⃒⃒
β(x)

⃒⃒
dx < ∞, а T (x) — тригонометрический многочлен: T (x) =

m∑︀
k=1

(ak cosωk x + bk sinωk x). При-

меним к системе (9) преобразование Фурье (см. [10], [1]). Образы Фурье функций α j(x),K(x, b j, η),ψ(x, η = ηl) —
функции A j(ω), K̃(ω, b j, ηl), Φ(ω, η = ηl) связаны соотношениями

√
2π

n∑︁
j=1

K̃(ω, b j, ηl)A j(ω) = Φ(ω, ηl), (10)

где

K̃(ω, b j, ηl) =
1
√

2π

∞∫︁
−∞

K(x, b j, ηl)e−iωxdx = −

√︂
2
π

sh((1 − b j)
√
ηlσ0)

∞∑︁
n=0

cos (λnb j)
λ2

n + ηlσ0 + ω2 =

=
−sh((1 − b j)

√
ηlσ0)

√
2π

sh((1 − b j)
√︀
ω2 + ηlσ0)√︀

ω2 + ηlσ0ch
√︀
ω2 + ηlσ0
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(образ Фурье функции K(x, b j, ηl) вычислен в [1]).
В первую очередь рассмотрим случай n = N (количество частот совпадает с числом слоев среды). Теорема

единственности для обратной задачи № 1 зависит от определителя системы (10):

Λ =

⃒⃒⃒⃒
⃒⃒⃒⃒K̃(ω, η1, b1) K̃(ω, η1, b2) · · · K̃(ω, η1, bn)
K̃(ω, η2, b1) K̃(ω, η2, b2) · · · K̃(ω, η2, bn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K̃(ω, ηn, b1) K̃(ω, ηn, b2) · · · K̃(ω, ηn, bn)

⃒⃒⃒⃒
⃒⃒⃒⃒ . (11)

Если определитель (11)Λ ̸= 0 при всехω ∈ (−∞,∞) и всех допустимых наборах ηl, b j, то теорема единственно-
сти справедлива (см. [11]). Для выяснения указанного условия потребуются некоторые факты математического
анализа. Приведем эти факты, следуя книге [12].

Утверждение 1 (см. [12], отдел 5, гл. 1, примеры 3.85 и 3.4). Пусть целая функция f (x) = a0 + a1x + a2x2 + . . .
(т.е. радиус сходимости степенного ряда ρ = ∞) задается необрывающимся степенным рядом с неотрицательными
коэффициентами ak. Пусть 0 < β1 < β2 < . . . < βn; b1, b2, . . . , bn — произвольные вещественные числа, не все равные
нулю. Тогда функция F(x) = b1 f (β1x) + b2 f (β2x) + . . . + bn f (βnx) имеет не больше положительных корней, чем число
перемен знаков в последовательности b1, b2, . . . , bn.

Замечание 3. Из утверждения следует, что при любых bk функция F(x) имеет не более n − 1 положительных
корней.

Утверждение 2 (см. [12], отдел 5, гл. 1, пример 3.38). Пусть коэффициенты в разложении целой функции f (x) =
= a0 + a1x + a2x2 + . . . вещественны, причем не все akравны нулю. Тогда число положительных корней функции f (x)
не превосходит числа перемен знаков в последовательности a0, a1, a2, . . .

Рассмотрим вспомогательный определитель, аналогичный Λ из (11).

Теорема 2. Определитель ∆ =
⃒⃒⃒
sh(
√
ηkσ0dl) · sh(

√︀
ηkσ0 + ω2dl)

⃒⃒⃒
̸= 0 при ω ∈ (−∞,∞), 0 < η1 < η2 < . . . < ηn,

0 < d1 < d2 < . . . < dn < 1, σ0 > 0.
Доказательство (от противного). Пусть определитель ∆ = 0. Тогда строки матрицы, которой соответствует

определитель ∆, линейно зависимы. Следовательно, есть коэффициенты ak, не все равные нулю, для которых

функция F(x) =
n∑︀

k=1
ak sh(

√
ηkσ0x) · sh(

√︀
ηkσ0 + ω2x) имеет n корней d1, d2, . . . , dn. Преобразуем функцию F(x), ис-

пользуя формулу shx · shy = 1
2 (ch(x + y) − ch(x − y)):

F(x) =
n∑︁

k=1

1
2

ak(ch((
√︀
ηkσ0 + ω2 +

√
ηkσ0)x) − ch((

√︀
ηkσ0 + ω2 −

√
ηkσ0)x)) =

=

n∑︁
k=1

ak

2
(ch((

√︀
ηkσ0 + ω2 +

√
ηkσ0)x) − ch(

ω2x√︀
ηkσ0 + ω2 +

√
ηkσ0

) =
n∑︁

k=1

ak

2
(ch(ωαk x) − ch(

ωx
αk

)),

(12)

гдеαk =

√
ηkσ0+ω2+

√
ηkσ0

|ω|
и, очевидно, 1 < α1 < α2 < . . . < αn. Запишем разложение функции F(x) из (12) в степенной

ряд:

F(x) =
n∑︁

k=1

ak

2

∞∑︁
m=0

(
ω2mα2m

k x2m

(2m)!
−

ω2mx2m

α2m
k (2m)!

)
∞∑︁

m=0

ω2mx2m

(2m)!

n∑︁
k=1

ak

2
(α2m

k −
1
α2m

k
) =

=

∞∑︁
m=0

ω2mx2m

(2m)!
(

n∑︁
k=1

ak sh(ξkm)) =
∞∑︁

m=0

(ωx)2m

(2m)!
b(m),

где ξk = lnα2
k, 0 < ξ1 < ξ2 < . . . < ξn, b(m) =

n∑︀
k=1

ak sh(ξkm).

Согласно утверждению 1, функция b(z) имеет не более n− 1 положительных корней. Следовательно, после-
довательность b(m)

(2m)! может иметь не более n − 1 перемен знака. По утверждению 2 отсюда следует, что функция
F(x) может иметь не более n − 1 положительных корней. Получено противоречие с существованием n корней
d1, d2, . . . , dn. Приведенное доказательство не включает случайω = 0. Для этого случая нужно применить форму-
лу sh2x = 1

2 (ch2x−1), и достаточно будет только утверждения 1. Функция F(x) на этот раз удовлетворяет условию
утверждения 1 и не может иметь более n − 1 положительных корней. Теорема 2 доказана.

Теорема 3 (теорема единственности и условие неединственности решения обратной задачи № 1). Пусть
αk(x), k = 1, 2, . . . , n, из (7) принадлежат L̃(∞)

1 (−∞,∞). Пусть ψ(x, ηl), l = 1, 2, . . . ,N, из (8) соответствуют этим
αk(x). Тогда при N ⩾ n обратная задача № 1 для указанных ψ(x, ηl) имеет единственное решение. При N < n обрат-
ная задача № 1 для этих ψ(x, ηl) имеет более одного решения.
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Доказательство. Рассматриваем сначала случай N = n. Строки матрицы, соответствующей определите-
лю (11), отличаются от строк матрицы, соответствующей определителю из теоремы 2, на постоянные множи-
тели (при этом нужно положить dk = 1 − bk, k = 1, 2, . . . , n). Следовательно, определитель из (11) не равен нулю.
Стало быть, система (10) имеет единственное решение Ak(ω), k = 1, 2, . . . , n. По функциям Ak(ω) единственным
образом находятся функции αk(x) ∈ L̃(∞)

1 (−∞,∞). Для N > n можно взять подсистему функций ψ(x, ηl), содержа-
щую n функций. Для этой подсистемы имеем уже рассмотренный случай, т.е. αk(x) находятся однозначно. Для
N < n перепишем систему (10) в виде

√
2π

N∑︁
i=1

K̃(ω, bi, ηl)Ai(ω) = Φ(ω, ηl) −
√

2π
n∑︁

i=N+1

K̃(ω, bi, ηl)Ai(ω), l = 1, 2, . . . ,N. (13)

Определитель матрицы коэффициентов левой части (13) по теореме 2 не равен нулю. Поэтому для любых Ai(ω),
i = N + 1,N + 2, . . . , n, система имеет решение относительно Ai(ω), i = 1, 2, . . . ,N. Возьмем два набора Ai(ω),
i = N + 1,N + 2, . . . , n:

A(1)
i (ω) = A(2)

i (ω) = Ai(ω), i = N + 1,N + 2, . . . , n − 1, A(1)
n (ω) = An(ω), A(2)

n (ω) = An(ω) + δ(ω − ω0)) + δ(ω + ω0),

где Ai(ω) — образы исходных αi(x) из условия теоремы, ω0 — любое положительное число.
В результате имеем два решения обратной задачи № 1: исходные функции α1(x),α2(x), . . . ,αn(x) и функции

вида

α1(x)+ b1 cosω0x, α2(x)+ b2 cosω0x, . . . , αN(x)+ bN cosω0x, αN+1(x),αN+2(x), . . . ,αn−1(x), αn(x)+

√︂
2
π

cosω0x.

Теорема 3 доказана.
Определение 5. Обратной задачей № 2 для системы (7) назовем задачу нахождения функций αi(x), (проводи-

мостей) и чисел bi (глубин залегания слоев) i = 1, 2, . . . , n, по функциямψ(x, η = ηl), l = 1, 2, . . . ,N, из (8). В обрат-
ной задаче № 2 нужно дополнительно, по сравнению с обратной задачей № 1, определить n чисел b1, b2, . . . , bn.

Можно предположить, что для определения этих чисел будет достаточно информации на n+ 1 частоте в том
случае, когда функции ψ(x, η = ηl) достаточно представительны, например, содержат много гармоник. В самом
деле. Вернемся к системе (10). Из этой системы следует, что определитель n + 1 порядка⃒⃒⃒⃒

⃒⃒⃒⃒ K̃(ω, η1, b1) K̃(ω, η1, b2) · · · K̃(ω, η1, bn) Φ(ω, η1)
K̃(ω, η2, b1) K̃(ω, η2, b2) · · · K̃(ω, η2, bn) Φ(ω, η2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K̃(ω, ηn+1, b1) K̃(ω, ηn+1, b2) · · · K̃(ω, ηn+1, bn) Φ(ω, ηn+1)

⃒⃒⃒⃒
⃒⃒⃒⃒ = 0. (14)

Пусть функции Φ(ω, ηl) известны при n значениях ω : ω ∈ {ω1,ω2, . . . ,ωn}. Тогда равенство (14) можно рас-
сматривать как систему n уравнений относительно n неизвестных b1, b2, . . . , bn:

F(ω1, b1, b2, . . . , bn) = 0,
F(ω2, b1, b2, . . . , bn) = 0,
. . . . . . . . . . . . . . . . .
F(ωn, b1, b2, . . . , bn) = 0.

(15)

Вполне оправдана гипотеза, что система (15) позволит однозначно определить глубины b1, b2, . . . , bn. Мо-
дельные примеры не противоречат этой гипотезе.

Пример 1. Рассмотрим двухслойную среду (n = 2). Пусть σ0 = 1, b1 = 0.3, α1(x) = sin x + sin(πx), b2 = 0.5,
α2(x) = 2 sin x− 2 sin(πx). Найдем решение прямой задачи для трех частот η ∈ {1, 4, 9}. Будем считать полученные
данные информацией для решения обратной задачи № 2. Система (15) в этом случае состоит из двух уравнений

F(ω = 1, b1, b2) = 0,
F(ω = π, b1, b2) = 0.

Величины b1, b2 меняются в треугольнике 0 < b1 < b2 < 1. Оказалось, что уравнения системы можно записать в
виде функций b1 = b1(b2,ω = 1), b1 = b1(b2,ω = π). При этом первая функция возрастающая, вторая – убываю-
щая в своих областях определения. Следовательно, обсуждаемая система второго порядка имеет единственное
решение b1 = 0.3, b2 = 0.5. Перенести этот частный результат на систему (15) не удалось. Более внимательный
анализ показал, что гипотеза об однозначном решении системы (15) оправдывается не всегда.
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Теорема 4 (условие неединственности решения обратной задачи № 2). Пусть 0 < b(i)
1 < b(i)

2 < . . . < b(i)
n < 1,

i = 1, 2, причем среди чисел b(i)
k нет одинаковых. Тогда найдутся такие функции α(i)

k (x), k = 1, 2, . . . , n, i = 1, 2, из (7)
принадлежат L̃(∞)

1 (−∞,∞), что решения прямых задач ψ(x, η = ηl), l = 1, 2, . . . , 2n − 1, из (8) для двух наборов b(i)
k ,

α
(i)
k (x), k = 1, 2, . . . , n, i = 1, 2, будут одинаковы.

Таким образом, теоремы единственности для обратной задачи № 2 по информации на N = 2n − 1 частотах
нет.

Доказательство. Запишем равенство (10) для двух сред:

√
2π

n∑︁
i=1

K̃(ω, b(1)
i , ηl)A

(1)
i (ω) = Φ(ω, ηl) =

√
2π

n∑︁
i=1

K̃(ω, b(2)
i , ηl)A

(2)
i (ω), l = 1, 2, . . . , 2n − 1. (16)

Преобразуем (16) следующим образом:

n∑︁
i=1

K̃(ω, b(1)
i , ηl)A

(1)
i (ω) +

n−1∑︁
i=1

K̃(ω, b(2)
i , ηl)(−A(2)

i (ω)) = K̃(ω, b(2)
n , ηl)A(2)

n (ω), l = 1, 2, . . . , 2n − 1. (17)

Положим A(2)
n (ω) = 1. Равенство (17) можно рассматривать как систему 2n−1 уравнений относительно 2n−1

неизвестных A(1)
i (ω), i = 1, 2, . . . , n, −A(2)

i (ω), i = 1, 2, . . . , n − 1.
Определитель системы не равен нулю по теореме 2. Поэтому система имеет единственное решение. Пара-

метрω может принимать любое число значений (конечное или бесконечное). В частности,ω может принимать
n значений: ω ∈ {ω1,ω1, . . . ,ωn}. В силу равенства (16) решения прямых задач для двух сред будут одинаковы.
Теорема 4 доказана.

Из теоремы 4 следует, что система (15) будет иметь, по крайней мере, 2 решения для данных, построенных
по алгоритму теоремы.

Пример 2 (неединственности решения, α(x) ∈ L1(−∞,∞)). Рассмотрим однослойную среду: σ0 = 1, b = 0.8,
α(x) = e−x2

. Выберем частоту зондирования η = 1. Решение прямой задачи (8) для системы (9) в случае указанной
среды дается формулой

ψ(x, η = 1) =
−sh0.2

2
√
π

+∞∫︁
−∞

sh(
√
ω2 + 1 · 0.2)

√
ω2 + 1ch(

√
ω2 + 1)

e−
√
ω2
4 eiωxdω ≈

+∞∫︁
−∞

Ae−Bω2
eiωxdω ≈

+∞∫︁
−∞

−0.00741e−0.624ω2
eiωxdω ≈ −0.017e−0.40x2

.

Этой же функции ψ(x, η = 1) соответствует однослойная среда с параметрами: σ0 = 1, b = 0.2,

α(x) =
sh0.2

2
√
π·sh0.8

+∞∫︁
−∞

sh(
√
ω2 + 1 · 0.2)

sh(
√
ω2 + 1 · 0.8)

e−
√
ω2
4 eiωxdω ≈

+∞∫︁
−∞

Ae−Bω2
eiωxdω ≈

+∞∫︁
−∞

0.0144e−0.346ω2
eiωxdω ≈ 0.043e−0.72x2

.

Пример 3 (неединственности решения, α(x) ∈ L̃(∞)
1 (−∞,∞)). Рассмотрим однослойную среду: σ0 = 1, b = 0.8,

α(x) = sin x + cos(
√

2x) + sin(πx). Выберем частоту зондирования η = 1. Решение прямой задачи для этой среды
дается формулой (в записи чисел здесь и в дальнейшем удерживаем 5 верных значащих цифр):

ψ(x, η = 1) = −
sh0.2sh(0.2

√
2)

√
2ch(
√

2)
sin x −

sh0.2sh(0.2
√

3)
√

3ch(
√

3)
cos(
√

2x) −
sh0.2sh(0.2

√
π2 + 1)

√
π2 + 1ch(

√
π2 + 1)

sin(πx) =

= −0.018734 sin x − 0.014094 cos(
√

2x) − 0.0031958 sin(πx).

Той же самой функции ψ(x, η = 1) соответствует однослойная среда с параметрами: σ0 = 1, b = 0.2,

α(x) =
sh0.2sh(0.2

√
2)

sh0.8sh(0.8
√

2)
sin x +

sh0.2sh(0.2
√

3)
sh0.8sh(0.8

√
3)

cos(
√

2x) +
sh0.2sh(0.2

√
π2 + 1)

sh0.8sh(0.8
√
π2 + 1)

sin(πx) =

= 0.046793 sin x + 0.042758 cos(
√

2x) + 0.023090 sin(πx).

Пример 4 (неединственности решения, αi(x) ∈ L̃(∞)
1 (−∞,∞)). Реализуем алгоритм теоремы 4. Рассмотрим

трехслойную среду:

σ0 = 1, b(1)
1 = 0.1, b(1)

2 = 0.2, b(1)
3 = 0.3,

α
(1)
1 (x) = 10−5(8.1029 sin x + 4.9952 sin(πx)); α

(1)
2 (x) = 10−4(−6.1455 sin x − 4.1198 sin(πx));

α
(1)
3 (x) = 10−3(1.3087 sin x + 0.95098 sin(πx)).
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Рассмотрим вторую трехслойную среду:

σ0 = 1, b(2)
1 = 0.7, b(2)

2 = 0.8, b(2)
3 = 0.9,

α
(2)
1 (x) = 10−2(8.9387 sin x + 8.4008 sin(πx)); α

(2)
2 (x) = 10−1(−4.4327 sin x − 4.3283 sin(πx)); α

(2)
3 (x) = sin x + sin(πx)).

Функции α( j)
i (x)получены из решения системы (17). Решения прямых задач для системы (7) для этих двух сред

совпадают на 5 частотах:
ψ(x, η = 1) = 10−4(−1.7217 sin x − 0.34582 sin(πx));

ψ(x, η = 4) = 10−4(−2.2038 sin x − 0.60899 sin(πx));

ψ(x, η = 9) = 10−4(−2.1355 sin x − 0.76525 sin(πx));

ψ(x, η = 16) = 10−4(−1.9108 sin x − 0.82177 sin(πx));

ψ(x, η = 25) = 10−4(−1.6246 sin x − 0.79492 sin(πx)).

Обращаем внимание на факт, неожиданный для автора.
Информация для решения обратной задачи – функции ψ(x, ηi) — зависят от 10 параметров. Трехслойная

среда задается 9 параметрами: три глубины bi и 6 коэффициентов разложения функций αi(x). Информация из-
начально представлялась даже избыточной, но теорема 4 и пример 4 показывают, что это не так.

Теорема 5 (условие единственности решения обратной задачи № 2). Пусть 0 < b1 < b2 < . . . < bn < 1.
Пусть αi(x) ∈ L̃(∞)

1 (−∞,∞), i = 1, 2, . . . , n, и каждая из αi(x) не равна нулю тождественно. Пусть решение прямой
задачи (8) — функция ψ(x, η) — известна для 2n частот ηk: η ∈ {η1, η2, . . . , η2n}. Тогда обратная задача № 2 для
системы (7) имеет единственное решение в классе функций αi(x) ∈ L̃(∞)

1 (−∞,∞).
Замечание 4. Условие теоремы о том, что каждая из α(1)

i (x) не равна нулю тождественно, вызвано существом
задачи и обеспечивает ситуацию, что среда является n-слойной. Если, скажем, α2(x) ≡ 0, то среда на самом деле
является n − 1 слойной, а b2 можно взять любым.

Доказательство теоремы 5. Как и при доказательстве теоремы 4, предположим, что данным для решения об-
ратной задачи соответствует и вторая среда с параметрами b(2)

k ,α(2)
k (x), k = 1, 2, . . . , n. Рассмотрим сначала случай,

когда среди чисел b(i)
k , k = 1, 2, . . . , n, i = 1, 2, нет одинаковых. Аналогично (17) получаем систему уравнений:

n∑︁
i=1

K̃(ω, b(1)
i , ηl)A

(1)
i (ω) +

n∑︁
i=1

K̃(ω, b(2)
i , ηl)(−A(2)

i (ω)) = 0, l = 1, 2, . . . , 2n. (18)

Определитель системы (18) не равен нулю, согласно теореме 2. Следовательно, система (18) имеет только три-
виальное решение при всех ω ∈ (−∞,+∞). Но нулевым A(k)

i (ω) соответствуют функции α(i)
k (x) ≡ 0, что противо-

речит условию теоремы.
Случай, когда среди глубин b(1)

i , b(2)
i есть одинаковые, рассматривается похожим образом. Для примера раз-

беремся с ситуацией, когда b(1)
1 = b(2)

1 , а среди остальных b(k)
i нет одинаковых. Тогда равенство (18) перепишется

в виде

K̃(ω, b(1)
1 , ηl)(A

(1)
1 (ω) − A(2)

1 (ω)) +
n∑︁

i=2

K̃(ω, b(1)
i , ηl)A

(1)
i (ω) +

n∑︁
i=2

K̃(ω, b(2)
i , ηl)(−A(2)

i (ω)) = 0, l = 1, 2, . . . , 2n. (19)

Рассмотрим для (19) подсистему из 2n − 1 уравнений, например, l = 1, 2, . . . , 2n − 1. Определитель подсистемы
не равен нулю, согласно теореме 2, поэтому A(1)

1 (ω) ≡ A(2)
1 (ω), A(k)

i (ω) ≡ 0, i = 2, 3, . . . , n, k = 1, 2.
Таким образом, в рассматриваемом случае: b(1)

1 = b(2)
1 , α(1)

1 (x) = α(2)
1 (x), α(k)

i (x) ≡ 0, i = 2, . . . , n, k = 1, 2. Послед-
нее равенство α(k)

i (x) ≡ 0 противоречит условию теоремы.
Аналогичным образом рассматриваются случаи, когда среди чисел b(1)

k , b(2)
k есть несколько совпадающих,

вплоть до случая, когда оба набора чисел совпадают. Теорема 5 доказана.
Фактическое решение обратной задачи № 2 является самостоятельной серьезной проблемой. В настоящей

статье эта проблема не обсуждается. Отметим лишь, что один из подходов связан с решением системы транс-
цендентных уравнений, похожей на систему (15). От системы (15) анонсированная система отличается прият-
ной особенностью: если система имеет решение, то оно единственно.

4. ЗАКЛЮЧЕНИЕ

Первоначальное правдоподобное предположение подтвердилось частично (предположение о том, что
n-слойную среду можно восстановить по информации на n + 1 частоте). Действительно, такие случаи быва-
ют (пример 1). Но оказалось, что для гарантированного однозначного восстановления n-слойной среды (т.е.

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 2 2025



ВОЗМОЖНОСТИ ЗОНДИРОВАНИЙ НА КОНЕЧНОМ НАБОРЕ ЧАСТОТ 179

для определения n функций αi(x) и n чисел bi) нужна информация на 2n частотах (т.е. 2n функций ψ(x, ηk)) (тео-
рема 5). Однозначно восстановить n-слойную среду по 2n−1 функциям ψ(x, ηk) не всегда удается, даже если эти
функции задаются каким угодно числом параметров (пример 4, теорема 4).
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Abstract. A two-dimensional medium in which the fields are described by the Helmholtz equation is
considered. A linearized formulation of the problem is studied, which ultimately reduces to reconstructing
the unknown right-hand side of the inhomogeneous Helmholtz equation in an infinite strip. The specified
right-hand side in this work is taken as a sum of delta functions, which can be interpreted as the total
conductivities of thin layers. The values of the solution of the Helmholtz equation and the normal derivative
of the solution at the band boundary for several values of the parameter in the Helmholtz equation are used
as information for solving the inverse problem. These data can be interpreted as the values of the electric
and magnetic field strengths at the band boundary for a finite set of frequencies. Using the Fourier series
expansion, an integral equation is obtained that relates the sought quantities to the data for solving the
inverse problem. Using the Fourier transform, the conditions for the uniqueness of the solution of the inverse
problem are established. Along with this, examples of the multivalued nature of the solution of the inverse
problem in unexpected situations are given.

Keywords: two-dimensional medium, thin layers, infinite strip, inverse problem for the Helmholtz equation,
uniqueness theorems, examples of the ambiguity of the solution when reconstructing the medium
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