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Разработаны приближенные численные алгоритмы решения сингулярных интегродифференциальных урав-
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и экспоненциальную скорость сходимости приближенного решения относительно степени интерполяци-
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ВВЕДЕНИЕ

В теории крыла конечного размаха, контактных задачах теории упругости и других задачах механики сплош-
ной среды важную роль играет уравнение вида

Γ(x)
B(x)

−
1
π

1∫︁
−1

Γ′(t)
t − x

dt = f (x), −1 < x < 1,

которое называется уравнением Прандтля [1]. Здесь B(x) и f (x) — известные функции из класса C[−1, 1], Γ(x) —
искомая функция, удовлетворяющая краевым условиям на границе интервала, Γ(±1) = 0.

Важно отметить, что ядро уравнения Прандтля имеет сингулярность, что порождает существенные труд-
ности при численном решении подобных задач с использованием традиционных подходов, основанных на
непосредственной аппроксимации интеграла квадратурными формулами [2]. В связи с этим, как показано в
исследованиях ряда авторов, весьма эффективный способ обработки подобного рода сингулярностей состо-
ит в представлении решения задачи и коэффициентов уравнения в виде интерполяционных полиномов с ис-
пользованием полиномов Чебышёва (см., например, [3 – 8]). Данный прием с учетом известных спектральных
соотношений [9, с. 188],

1
π

1∫︁
−1

Tn(t)
√

1 − t2

dt
t − x

= Un−1(x),

1
π

1∫︁
−1

√
1 − t2Un−1(t)

dt
t − x

= −Tn(x), −1 < x < 1, n = 1, 2, 3, . . . ,

(1)

где Tn(x), Un(x) – многочлены Чебышёва степени n I и II рода соответственно, позволяет вычислить аналитиче-
ски сингулярную составляющую интеграла и получить экспоненциальную скорость сходимости приближенно-
го решения задачи [4]. Спектральные методы на основе полиномов Чебышёва для некоторых частных случаев
уравнения Прандтля построены в работах [5–7] , где показана их высокая эффективность.
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1. ПОСТАНОВКА ЗАДАЧИ И НЕКОТОРЫЕ ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

Рассмотрим сингулярное уравнение Прандтля общего вида [1, 8]:

Γ(x)
B(x)

−
1
π

1∫︁
−1

Γ′(t)
t − x

dt +

1∫︁
−1

g(x, t)Γ′(t)dt +

1∫︁
−1

v(x, t)Γ(t)dt = f (x), −1 < x < 1. (2)

Здесь B(x), v(x, t), g(x, t) и f (x) — известные функции, Γ(x) — искомая функция, удовлетворяющая краевым усло-
виям

Γ(±1) = 0. (3)

Для построения приближенной схемы решения задачи (2), (3) используем интерполяционный многочлен
для функции f (x) по узлам Чебышёва I рода [10 с. 89]:

f (x) ≈ fn(x) =
n∑︁

j=0

0c j T j(x), (4)

где

c j =
2

n + 1

n∑︁
k=0

f (xk)T j(xk), j = 0, 1, . . . , n, xk = cos
2k + 1
2n + 2

π, k = 0, 1, . . . , n.

Здесь и далее
n∑︁

j=0

0a j =
1
2

a0 + a1 + . . . + an.

Используя известные свойства полиномов Чебышёва, см. [10, с. 23]:

T0(x) = U0(x), 2T1(x) = U1(x), 2T j(x) = U j(x) − U j−2(x), j ⩾ 2,

несложно получить аналогичное приближенное представление функции f (x) в виде разложения по полиномам
Чебышёва II рода:

fn(x) =
n∑︁

j=0

f j U j(x), (5)

где

xk = cos
2k + 1
2n + 2

π, k = 0, 1, . . . , n, G j =
1

n + 1

n∑︁
k=0

f (xk)T j(xk), j = 0, 1, . . . , n,

f j = G j − G j+2, j = 0, 1, . . . , n − 2, fn−1 = Gn−1, fn = Gn.

При построении вычислительных схем используем интерполяционные многочлены функции двух перемен-
ных в виде разложения по многочленам Чебышёва:

ψn,n(x, t) =
n∑︁

m=0

Tm(x)
n∑︁

j=0

σm jT j(t),

σm j =
δ j

n + 1

n+1∑︁
r=1

T j(xr)
δm

n + 1

n+1∑︁
l=1

Tm(xl)ψ(xl, xr),

δi =

{︃
1, i = 0,
2, i > 0,

xp = cos
2p − 1
2n + 2

π, p = 1, 2, . . . , n + 1.

(6)

Полагаем, что производная решения задачи принадлежит классу функций h(0) по Мусхелишвили – класс
функций с интегрируемой особенностью в окрестности точек x = ±1 [11, с. 31], т.е. ψ(x) ∈ h(0), если на от-
резке [−1 + ε1, 1 − ε2] ε1 > 0, ε2 > 0, ψ(x) удовлетворяет условию Гёльдера и в окрестности точек ±1 допускает
интегрируемую особенность.
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2. ПРИВЕДЕНИЕ УРАВНЕНИЯ К УРАВНЕНИЮ ФРЕДГОЛЬМА

Сведем уравнение (2) к уравнению Фредгольма II рода с логарифмической особенностью. Пусть

u(x) = −
1
π

1∫︁
−1

Γ′ (t)
t − x

dt. (7)

Применим формулу обращения сингулярного интеграла (7) в указанном классе функций h(0):

Γ′(x) =
1

√
1 − x2

1
π

1∫︁
−1

√
1 − t2u(t)

t − x
dt +

c
√

1 − x2
.

Здесь c — произвольная постоянная. Отсюда с учетом (3) получим

Γ(x) =

x∫︁
−1

Γ′(τ)dτ =

x∫︁
−1

1
√

1 − τ2

⎛⎝ 1
π

1∫︁
−1

√
1 − t2 u(t)

t − τ
dt +

c
√

1 − τ2

⎞⎠ dτ =
1
π

1∫︁
−1

H(x, t)u(t)dt + µ(x),

где

H(x, t) =
√

1 − t2

x∫︁
−1

(︂
1

√
1 − τ2

dτ
t − τ

)︂
= ln

1 − xt +
√

1 − x2
√

1 − t2

|t − x|
, (8)

µ(x) = c
(︁

arcsin x +
π

2

)︁
.

Учитывая, что H(−1, t) = H(1, t), находим c = 0.
Отметим, что функция H(x, t) симметрична и неотрицательна. В самом деле

H(x, t) = H(cos θ, cos σ) = ln
1 − cos(θ + σ)

2 sin θ+σ
2

⃒⃒
sin θ−σ

2

⃒⃒ = ln
sin θ+σ

2⃒⃒
sin θ−σ

2

⃒⃒ ⩾ 0, 0 < σ, θ ⩽ π.

Имеет место оценка

1
π

1∫︁
−1

|H(x, t)| dt =
1
π

1∫︁
−1

√
1 − t2

x∫︁
−1

(︂
1

√
1 − τ2

dτ
t − τ

)︂
dt =

√
1 − x2 ⩽ 1. (9)

Принимая во внимание, что

1∫︁
−1

g(x, t)Γ′(t)dt =

1∫︁
−1

g(x, t)

⎛⎝ 1
√

1 − t2

1
π

1∫︁
−1

√
1 − τ2u(τ)
τ − t

dτ

⎞⎠ dt =

= −

1∫︁
−1

√
1 − τ2u(τ)

⎛⎝ 1
π

1∫︁
−1

g(x, t)
√

1 − t2(t − τ)
dt

⎞⎠ dτ =

1∫︁
−1

G(x, τ)u(τ)dτ,

G(x, τ) = −
√

1 − τ2 1
π

1∫︁
−1

g(x, t)
√

1 − t2(t − τ)
dt,

(10)

и
1∫︁
−1

v(x, t)Γ(t)dt =

1∫︁
−1

v(x, t)
1
π

1∫︁
−1

H(t, ς)u(ς)dςdt =

1∫︁
−1

u(ς)

⎛⎝ 1
π

1∫︁
−1

v(x, t)H(t, ς)dt

⎞⎠ dς =

1∫︁
−1

u(ς)V(x, ς)dς,

V(x, ς) =
1
π

1∫︁
−1

v(x, t)H(t, ς)dt,

(11)
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а также

Γ(x) =
1
π

1∫︁
−1

H(x, t)u(t)dt (12)

введем линейный оператор

K(u; x) =
1

B(x)
1
π

1∫︁
−1

H(x, t)u(t)dt +

1∫︁
−1

G(x, t)u(t)dt +

1∫︁
−1

u(t)V(x, t)dt. (13)

Таким образом, граничная задача (2), (3) сводится к операторному уравнению вида

u(x) + K(u; x) = f (x). (14)

Для вывода достаточных условий разрешимости уравнения (14) оценим оператор (13) в равномерной мет-
рике. Учитывая, что

1∫︁
−1

G(x, t)u(t)dt =

1∫︁
−1

g(x, t)Γ′(t)dt,

Следовательно, ⃒⃒⃒⃒
⃒⃒

1∫︁
−1

G(x, t)u(t)dt

⃒⃒⃒⃒
⃒⃒ =
⃒⃒⃒⃒
⃒⃒

1∫︁
−1

g(x, t)Γ′(t)dt

⃒⃒⃒⃒
⃒⃒ ⩽

1∫︁
−1

⃒⃒
g(x, t)Γ′(t)

⃒⃒
dt ⩽ ‖g‖C

1∫︁
−1

⃒⃒
Γ′(t)

⃒⃒
dt =

= ‖g‖C

1∫︁
−1

⃒⃒⃒⃒
⃒⃒ 1
√

1 − t2

1
π

1∫︁
−1

√
1 − t12u(t1)

t1 − t
dt1

⃒⃒⃒⃒
⃒⃒ dt ⩽ ‖g‖C‖u‖C

1∫︁
−1

1
√

1 − t2

⃒⃒⃒⃒
⃒⃒ 1π

1∫︁
−1

√
1 − t12

t1 − t
dt1

⃒⃒⃒⃒
⃒⃒ dt =

= ‖g‖C‖u‖C

1∫︁
−1

1
√

1 − t2
|t| dt =

2
π
‖g‖C‖u‖C.

(15)

Далее, на основании (9) получим

|V(x, ς)| =

⃒⃒⃒⃒
⃒⃒ 1π

1∫︁
−1

v(x, t)H(t, ς)dt

⃒⃒⃒⃒
⃒⃒ ⩽ ‖v‖C 1

π

1∫︁
−1

|H(t, ς)| dt = ‖v‖C
√︀

1 − ς2,

и тогда ⃒⃒⃒⃒
⃒⃒

1∫︁
−1

u(t)V(x, t)dt

⃒⃒⃒⃒
⃒⃒ ⩽ ‖u‖C

⃒⃒⃒⃒
⃒⃒

1∫︁
−1

V(x, t)dt

⃒⃒⃒⃒
⃒⃒ ⩽ ‖u‖C‖v‖C

⃒⃒⃒⃒
⃒⃒

1∫︁
−1

√
1 − t2dt

⃒⃒⃒⃒
⃒⃒ = π2 ‖v‖C‖u‖C. (16)

Окончательно, с учетом (9), (15), (16) имеем

‖Ku‖C ⩽ ‖u‖C

(︂
max
|x|⩽1

⃒⃒⃒√
1 − x2/ |B(x)|

⃒⃒⃒
+
π

2
‖v‖C +

2
π
‖g‖C

)︂
.

Относительно условий разрешимости задачи имеет место
Теорема 1. Пусть функции B(x), v(x, t), g(x, t), входящие в уравнение (2), удовлетворяют условию

ρ = max
|x|⩽1

⃒⃒⃒√
1 − x2/ |B(x)|

⃒⃒⃒
+
π

2
‖v‖C +

2
π
‖g‖C < 1. (17)

Тогда граничная задача (2), (3) имеет единственное решение в классе функций Γ′(x) ∈ h(0) при любой f (x) ∈ C[−1, 1].
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3. СХЕМЫ ПРИБЛИЖЕННОГО РЕШЕНИЯ

С учетом (7), (13) и (14) приближенное решение задачи (2), (3) будем искать как решение следующего урав-
нения:

un(x) + K(un; x) = Fn(x), (18)

где

K(un; x) =
1

πB(x)

1∫︁
−1

H(x, t)un(t)dt +

1∫︁
−1

Gn,n(x, t)un(t)dt +

1∫︁
−1

Vn,n(x, t)un(t)dt, (19)

Fn(x) – некоторая функция из класса C[−1, 1], такая, что Fn(x j) = f (x j), x j = cos 2 j+1
2n+2 , j = 0, 1, . . . , n, un(x) —

интерполяционный многочлен (5) функции u(x), построенный по узлам Чебышёва I рода:

un(x) = −
1
π

1∫︁
−1

Γ′n(t)
t − x

dt =
n∑︁

k=0

ckUk(x), (20)

где ck, k = 0, 1, . . . , n, – пока неизвестные постоянные, gn,n(x, t), vn,n(x, t) — интерполяционные многочлены для
функций g(x, t), v(x, t) соответственно. Используя интерполяционные многочлены, построенные на основа-
нии (4), (5) подобно (6), получим две вычислительные схемы приближенного решения уравнения (2).

Схема 1. В (10) и (11) для функций g(x, t), v(x, t) выберем интерполяционные многочлены вида (6) gn,n(x, t),
vn,n(x, t). Тогда, используя интерполяционные представления,

Gn,n(x, τ) = −

√
1 − τ2

π

1∫︁
−1

gn,n(x, t)
√

1 − t2(t − τ)
dt, Vn,n(x, τ) =

1
π

1∫︁
−1

vn,n(x, t)H(t, τ)dt,

вычислим последовательно интегралы в формуле (19).
С учетом (1), (19) и (20) имеем

Γn(x) =
1
π

1∫︁
−1

H(x, t)un(t)dt =

x∫︁
−1

1
√

1 − τ2

⎛⎝ 1
π

1∫︁
−1

√
1 − t2 un(t)

t − τ
dt

⎞⎠ dτ =

=

n∑︁
k=0

ck

x∫︁
−1

1
√

1 − τ2

⎛⎝ 1
π

1∫︁
−1

√
1 − t2 Uk(t)

t − τ
dt

⎞⎠ dτ =
√

1 − x2
n∑︁

k=0

ck
1

k + 1
Uk(x).

(21)

Используя (1), (10) и явное представление (6) для функции gn,n(x, t), вычислим функцию Gn,n(x, τ):

Gn,n(x, τ) = −
√

1 − τ2 1
π

1∫︁
−1

gn,n(x, t)
√

1 − t2(t − τ)
dt = −

√
1 − τ2

n∑︁
m=0

Tm(x)
n∑︁

j=0

σm j

⎛⎝ 1
π

1∫︁
−1

T j(t)
√

1 − t2(t − τ)
dt

⎞⎠ =
= −
√

1 − τ2
n∑︁

m=0

Tm(x)
n∑︁

j=1

σm jU j−1(τ),

(22)

где

σm j =
δ j

n + 1

n+1∑︁
r=1

T j(xr)
δm

n + 1

n+1∑︁
l=1

Tm(xl)g(xl, xr),

δi =

{︃
1, i = 0,
2, i > 0,

xp = cos
2p − 1
2n + 2

π, p = 1, 2, . . . , n + 1.

(23)

Интегралы в (18), (19) вычислим используя представления (22), (23). Изменяя порядок суммирования, с уче-
том свойства ортогональности многочленов Чебышёва имеем

1∫︁
−1

Gn,n(x, τ)un(τ)dτ = −

1∫︁
−1

√
1 − τ2

⎛⎝ n∑︁
m=0

Tm(x)
n∑︁

j=1

σm, jU j−1(τ)

⎞⎠(︃ n∑︁
k=0

ckUk(τ)

)︃
dτ =

= −

n∑︁
k=0

ck

n∑︁
m=0

Tm(x)
n∑︁

j=1

σm, j

⎛⎝ 1∫︁
−1

√
1 − τ2Uk(τ)U j−1(τ)dτ

⎞⎠ = −π
2

n−1∑︁
k=0

ck

n∑︁
m=0

Tm(x)σm,k+1,

(24)
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где σm,k+1 определены формулой (23).
Далее, используя явное представление (6) для функции vn,n(x, t) и (21), с учетом (1) и свойств многочленов

Чебышёва [10], получим

Ln(x) =

1∫︁
−1

Vn,n(x, ς)un(ς)dς ≡

1∫︁
−1

vn,n(x, t)Γn(t)dt =
n∑︁

m=0

Tm(x)
n∑︁

j=0

ωm j

1∫︁
−1

T j(t)

(︃
√

1 − t2
n∑︁

k=0

ck
1

k + 1
Uk(t)

)︃
dt =

=

n∑︁
k=0

ck

k + 1

n∑︁
m=0

Tm(x)
n∑︁

j=0

ωm j

1∫︁
−1

√
1 − t2Uk(t)T j(t)dt =

n∑︁
k=0

ck

k + 1

n∑︁
m=0

Tm(x)
n∑︁

j=0

ωm j

1∫︁
−1

√
1 − t2 Uk− j(t) + Uk+ j(t)

2
dt,

(25)

где

ωm j =
δ j

n + 1

n+1∑︁
r=1

T j(xr)
δm

n + 1

n+1∑︁
l=1

Tm(xl)v(xl, xr),

δi =

{︃
1, i = 0,
2, i > 0,

xp = cos
2p − 1
2n + 2

π, p = 1, 2, . . . , n + 1.

(26)

Так как

βm =

1∫︁
−1

√
1 − t2Um(t)dt =

⎧⎪⎪⎨⎪⎪⎩
−
π

2
, m = −2,

π

2
, m = 0,

0, m ̸= −2, 0,

(27)

то, относительно Ln(x)имеем

Ln(x) =
n∑︁

k=0

ck

2(k + 1)

n∑︁
m=0

Tm(x)
n∑︁

j=0

ωm j
(︀
βk− j + βk+ j

)︀
, (28)

и, с учетом (27), получим

Ln(x) =
n∑︁

k=0

ck

2k + 2

n∑︁
m=0

Tm(x)
n∑︁

j=0

ωm jβk− j + c0
π

4

n∑︁
m=0

Tm(x)ωm0. (29)

Таким образом, на основании (21), (24) и (29) имеем

K(un; x) =

√
1 − x2

B(x)

n∑︁
k=0

ck
1

k + 1
Uk(x) −

π

2

n−1∑︁
k=0

ck

n∑︁
m=0

Tm(x)σm,k+1+

+

n∑︁
k=0

ck

2k + 2

n∑︁
j=0

βk− j

n∑︁
m=0

Tm(x)ωm j + c0
π

4

n∑︁
m=0

Tm(x)ωm0.

(30)

В результате, с учетом (20), (27), (30), уравнение (18) принимает вид

c0

(︃√
1 − x2

B(x)
+ 1 +

π

4

n∑︁
m=0

Tm(x)(ωm0 − 2ωm2 − 2σm,1)

)︃
+

+

n−1∑︁
k=1

ck

(︃√
1 − x2

B(x)
Uk(x)
k + 1

+ Uk(x) −
π

2

n∑︁
m=0

Tm(x)σm,k+1+
π

4k + 4

n∑︁
m=0

Tm(x)(ωmk − λkωmk+2)

)︃
+

+cn

{︃(︃√
1 − x2

B(x)
1

n + 1
+ 1

)︃
Un(x) +

π

4n + 4

n∑︁
m=0

Tm(x)ωmn

}︃
= Fn(x), λk ≡

{︃
0, k > n − 2,
1, k ⩽ n − 2.

(31)

Из уравнения (31) следует система линейных алгебраических уравнений для вычисления c0, c1, . . . , cn, ко-
торая получается путем последовательной подстановки в (31) вместо x нулей многочлена Чебышёва I рода,
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xi = cos 2i+1
2n+2 , i = 0, 1, . . . , n:

c0

(︃√︀
1 − xi

2

B(xi)
+ 1 +

π

4

n∑︁
m=0

Tm(xi)(ωm0 − 2ωm2 − 2σm,1)

)︃
+

+

n−1∑︁
k=1

ck

(︃√︀
1 − xi

2

B(xi)
Uk(xi)
k + 1

+ Uk(xi) −
π

2

n∑︁
m=0

Tm(xi)σm,k+1+
π

4k + 4

n∑︁
m=0

Tm(xi)(ωmk − λkωmk+2)

)︃
+

+cn

{︃(︃√︀
1 − xi

2

B(xi)
1

n + 1
+ 1

)︃
Un(xi) +

π

4n + 4

n∑︁
m=0

Tm(xi)ωmn

}︃
= Fn(xi), λk ≡

{︃
0, k > n − 2,
1, k ⩽ n − 2.

i = 0, 1, . . . , n.

(32)

Совместность системы уравнений (32) позволяет вычислить коэффициенты ck, k = 0, 1, . . . , n. Приближен-
ное решение задачи (2), (3) – функция Γn(x) – вычисляется согласно (21) для произвольной точки x ∈ [−1, 1].

Схема 2. В (10) и (11) для функций g(x, t), v(x, t) выберем интерполяционные многочлены gn,n(x, t) и
vn,n(x, t)вида

gn,n(x, t) =
n∑︁

m=0

Um(x)
n∑︁

j=0

ηm jT j(t),

ηm j =
δ j

(n + 1)2

n+1∑︁
r=1

T j(xr)
n+1∑︁
l=1

(Tm(xl) − νmTm+2(xl))g(xl, xr),

δ j =

{︃
1, j = 0,
2, j > 0,

νm =

{︃
1, 0 ⩽ m ⩽ n − 2,
0, m = n − 1, n,

xk = cos
2k − 1
2n + 2

π, k = 1, 2, . . . , n + 1,

(33)

vn,n(x, t) =
n∑︁

m=0

Um(x)
n∑︁

j=0

ρm, jU j(t),

ρm, j =
1

(n + 1)2

n∑︁
l=0

(Tm(xl) − σmTm+2(xl))
n∑︁

r=0

v(xl, xr)
(︀
T j(xr) − θ jT j+2(xr)

)︀
,

θ j =

{︃
1, j = 0, n − 2,
0, j = n − 1, n,

σm =

{︃
1, m = 0, n − 2,
0, m = n − 1, n,

xk = cos
2k + 1
2n + 2

π, k = 0, n.

(34)

Далее, как и в предыдущем случае, последовательно вычислим интегралы в выражении (19). Используя (1),
(10) и явное представление (33) для функции gn,n(x, t), имеем

Gn,n(x, τ) = −
√

1 − τ2 1
π

1∫︁
−1

gn,n(x, t)
√

1 − t2(t − τ)
dt = −

√
1 − τ2

n∑︁
m=0

Um(x)
n∑︁

j=0

ηm j

⎛⎝ 1
π

1∫︁
−1

T j(t)
√

1 − t2(t − τ)
dt

⎞⎠ =
= −
√

1 − τ2
n∑︁

m=0

Um(x)
n∑︁

j=1

ηm jU j−1(τ).

(35)

С учетом ортогональности многочленов Чебышёва имеем

1∫︁
−1

Gn,n(x, τ)un(τ)dτ = −

1∫︁
−1

√
1 − τ2

⎛⎝ n∑︁
m=0

Um(x)
n∑︁

j=1

ηm, jU j−1(τ)

⎞⎠(︃ n∑︁
k=0

ckUk(τ)

)︃
dτ =

= −

n∑︁
k=0

ck

n∑︁
m=0

Um(x)
n∑︁

j=1

ηm, j

⎛⎝ 1∫︁
−1

√
1 − τ2Uk(τ)U j−1(τ)dτ

⎞⎠ = −π
2

n−1∑︁
k=0

ck

n∑︁
m=0

Tm(x)ηm,k+1,

(36)

где ηm,k+1 определены в (33).
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Далее, используя (1), (21), (34) и свойства многочленов Чебышёва

Ln(x) =

1∫︁
−1

Vn,n(x, ς)un(ς)dς ≡

1∫︁
−1

vn,n(x, t)Γn(t)dt =
n∑︁

m=0

Um(x)
n∑︁

j=0

ρm j

1∫︁
−1

U j(t)

(︃
√

1 − t2
n∑︁

k=0

ck
1

k + 1
Uk(t)

)︃
dt =

=

n∑︁
k=0

ck

k + 1

n∑︁
m=0

Um(x)
n∑︁

j=0

ρm j

1∫︁
−1

√
1 − t2Uk(t)U j(t)dt =

n∑︁
k=0

ck

k + 1
π

2

n∑︁
m=0

Um(x)ρmk.

(37)

Учитывая проделанные вычисления (36) и (37), имеем

K(un; x) =

√
1 − x2

B(x)

n∑︁
k=0

ck
1

k + 1
Uk(x) −

π

2

n−1∑︁
k=0

ck

n∑︁
m=0

Um(x)ηm,k+1 + π

n∑︁
k=0

ck

2k + 2

n∑︁
m=0

Um(x)ρmk, (38)

и уравнение (18) принимает вид

n−1∑︁
k=0

ck

(︃√
1 − x2

B(x)
Uk(x)
k + 1

+ Uk(x) −
π

2

n∑︁
m=0

Um(x)ηm,k+1 +
π

2k + 2

n∑︁
m=0

Um(x)ρmk

)︃
+

+cn

{︃(︃√
1 − x2

B(x)
1

n + 1
+ 1

)︃
Un(x) +

π

2n + 2

n∑︁
m=0

Um(x)ρmn

}︃
= Fn(x).

(39)

Как и в схеме 1, из уравнения (39) получаем систему линейных алгебраических уравнений для вычисле-
ния c0, c1, . . . , cn, подставляя последовательно в (39) вместо x нули многочлена Чебышёва I рода, а именно,
xi = cos 2i+1

2n+2 , i = 0, 1, . . . , n.:

n−1∑︁
k=0

ck

(︃√︀
1 − x2

i

B(xi)
Uk(xi)
k + 1

+ Uk(xi) −
π

2

n∑︁
m=0

Um(xi)ηm,k+1 +
π

2k + 2

n∑︁
m=0

Um(xi)ρmk

)︃
+

+cn

{︃(︃√︀
1 − xi

2

B(xi)
1

n + 1
+ 1

)︃
Un(xi) +

π

2n + 2

n∑︁
m=0

Um(xi)ρmn

}︃
= f (xi).

(40)

Совместность системы уравнений (40) позволяет вычислить коэффициенты ck, k = 0, 1, . . . , n. Приближен-
ное решение задачи (2), (3) – функция Γn(x) – вычисляется согласно (21) для произвольной точки x ∈ [−1, 1].

4. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО ЭКСПЕРИМЕНТА

Приведем результаты численного эксперимента, проведенного согласно построенным численным схе-
мам (23), (32) и (23), (40).

Рассмотрим интегродифференциальное уравнение

Γ(x)
B(x)

−
1
π

1∫︁
−1

Γ′(t)
t − x

dt +

1∫︁
−1

g(x, t)Γ′(t)dt +

1∫︁
−1

v(x, t)Γ(t)dt = f (x), −1 < x < 1,

g(x, t) =
1
5

1
x − 2

t
t + 2
, v(x, t) =

1
5

x
x + 2

t
t2 + 1

, B(x) =
√

1 − x2 1.1 + 4x2

1 + 2x2 ,

f (x) =
1

B(x)

(︃
√

1 − x2 −
√

2arcth

(︃√
1 − x2
√

2

)︃)︃
−

√
2

x2 + 1
+ 1 −

2π
(︁√

2 + 2
√

3 − 5
)︁

25x − 50
.

(41)

Известно, что решением задачи (3), (41) является функция

Γ(x) =
√

1 − x2 −
√

2 arcth

(︃√
1 − x2
√

2

)︃
.

Несложно убедиться, что производная данной функции Γ′(x) ∈ h(0).
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Фиг. 1. Абсолютная величина погрешности приближенного решения задачи (41), (3), полученного по схеме 2 при n = 10,
и n = 34.

Как показывают расчеты, уже при сравнительно небольших значениях n достигается предельная точность
приближенного решения, погрешность которого ограничена снизу лишь с вычислительной погрешностью.

Решая системы уравнений (32) или (40) при n = 10 и n = 34, приближенные решения Γn(x), вычисленные по
формуле (21), отличаются от точного решения Γ(x) в точках x = −0.99,−0.98, . . . , 0.99, не более чем на 5.6 · 10−6

и 1.5 ·10−15 соответственно. Число обусловленности матриц систем (34) и (42) при размерности n равной 10 и 34
соответственно cond(C10) ≤ 25 и cond(C34) ≤ 142, что позволяет грубо оценить зависимость числа обусловлен-
ности от размерности как cond(Cn) ∼= O(n3/2).

Представленные результаты численных экспериментов позволяют оценить эмпирически скорость сходи-
мости построенных численных алгоритмов как экспонециальную:

δ = ‖Γ(x) − Γn(x)‖C = O
(︀
exp(−αn)

)︀
, (42)

где α > 0 – некоторая постоянная, не зависящая от n. Для рассмотренного примера α ∼= 1 (exp(−34) = 1.7 ·10−15).
Естественно, что это весьма частный пример, не претендующий на сколь-нибудь значимые обобщения. Вместе
с тем, априорные оценки погрешности численных методов решения подобных задач, полученные, например,
в работах [8, 12] представляются весьма осторожными и указывают на необходимость дальнейших исследова-
ний в направлении их оптимизации.

Таким образом, развитая в данной работе приближенная методика обладает высокой эффективностью в
классе сингулярных интегродифференциальных уравнений прандтлевского типа. На примере тестовой зада-
чи продемонстрировано, что дискретная модель, основанная на представлении решения в виде разложения по
полиномам Чебышёва, приводит к хорошо обусловленной системе линейных алгебраических уравнений для
коэффициентов разложения, а сходимость погрешности приближенного решения может достигать экспонен-
циальной скорости относительно степени интерполяционного полинома.
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Abstract. An approximate numerical method for solving singular integro-differential equations of the
generalized Prandtl equation type has been developed. The proposed approximate schemes are based
on representing the solution and coefficients of the equation as an expansion over an orthogonal basis
of Chebyshev polynomials. The use of known spectral relations has made it possible to obtain an
analytical expression for the singular component of the equation. As a consequence, the proposed method
demonstrates excellent accuracy and exponential rate of convergence of the approximate solution relative
to the degree of interpolation polynomials. The computational qualities of the proposed method are
demonstrated using a test example.
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