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ВВЕДЕНИЕ

В работе [1] были доказаны достаточно общие оценки погрешности трехслойного по времени метода конеч-
ных элементов (МКЭ) с весом для начально-краевой задачи для гиперболических уравнений второго порядка.
В случае методов второго порядка аппроксимации это в том числе оценки погрешности порядка 𝒪((h + τ)2λ/3),
0 ⩽ λ ⩽ 3, в равномерных по t (по времени) норме L2 по x (по пространству) и энергетической норме (в том
числе сеточной по x) при обеих начальных функциях и свободном члене уравнения из пространств Соболева
и Никольского соответствующих порядков гладкости и со степенями суммируемости 2 по x и 1 по t. В одно-
мерном случае подобные результаты были анонсированы намного раньше в теореме 1 в [2] и в равномерной
по t норме L2 по x были доказаны в [3]. Обратим внимание на то, что порядки этих оценок множителем 2/3
радикально отличаются от порядков соответствующих оптимальных оценок погрешности МКЭ в случаях эл-
липтических и параболических уравнений, см., в частности, [4]. Интересные результаты в этом направлении
для нестационарного уравнения Шрёдингера были установлены в [5].

В данной работе изучается билинейный МКЭ с весом в случае простейшего гиперболического одномерно-
го волнового уравнения. Выводятся оценки погрешности снизу порядков (h + τ)2λ/3, 0 ⩽ λ ⩽ 3, в нормах L1

и W1,1
h со степенью суммируемости 1 и по t, и по x. В них каждая из двух начальных функций или свобод-

ный член в уравнении принадлежат пространствам типа Гёльдера соответствующих порядков гладкости. Они
обосновывают точность по порядку упомянутых оценок погрешности метода конечных элементов второго по-
рядка аппроксимации из [1, 2], а также невозможность их улучшения при максимальном ослаблении (до 1)
степени суммируемости в нормах погрешности и одновременном максимальном ее усилении (до ∞) в нормах
данных. Более того, в [1] свободный член брался из различных пространств функций с доминирующей сме-
шанной гладкостью по x и t, а здесь в оценках погрешности снизу использовано сразу пересечение всех этих
пространств. Дополнительно показано, что оценки погрешности нельзя улучшить, если в норме погрешности
исходную прямоугольную область по x и t сузить до любого ее подпрямоугольника. Доказательство основано
на явных фурье-формулах для точного и приближенного решений и асимптотическом анализе погрешности на
начальных данных-гармониках и свободном члене – произведении гармоник по x и t со специальным выбором

1) Работа выполнена при финансовой поддержке РНФ (проект 23-21-00061).
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номеров гармоник в зависимости от шагов сеток по x и t и веса в методе. Эти результаты несколько обобщают
и усовершенствуют оценки погрешности снизу и их доказательство, данные в [2, 3].

В статье [6] была получена оценка погрешности снизу порядка h2 в равномерной по t и L2-норме по x при
первой начальной функции из пространства Соболева W3,2. Это было сделано для полудискретного, а не пол-
ностью дискретного, МКЭ второго порядка аппроксимации, также с помощью метода Фурье. Такой результат
был распространен на полудискретный МКЭ высокого порядка аппроксимации в [7].

Отметим также, что практические порядки погрешности на сгущающихся сетках на конкретных негладких
данных (вместо пространств данных), разрывных или с разрывными производными различных порядков, так-
же согласующиеся с теоретическими оценками погрешности из [1, 2], были установлены в [8].

В разд. 1 статьи ставится начально-краевая задача для волнового уравнения, дается операторная форма би-
линейного МКЭ с весом и выводится формула типа Фурье для его решения. В разд. 2 выполняется асимпто-
тический анализ поведения погрешности на данных-гармониках. В разд. 3 определяются пространства типа
Гёльдера и выводятся теоремы об оценках погрешности снизу на данных из этих пространств.

1. БИЛИНЕЙНЫЙ МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ С ВЕСОМ

Поставим начально-краевую задачу для 1D волнового уравнения

∂2
t u − c2

0∂
2
xu = f (x, t), (x, t) ∈ QT = IX × IT , (1.1)

u|x=0,X = 0, u|t=0 = u0(x), ∂tu|t=0 = u1(x), x ∈ IX , (1.2)

при однородном краевом условии Дирихле. Здесь c0 = const > 0 и Ia = (0, a). Введем набор данных этой задачи
d := (u0, u1, f ) и его разложение d = d(0) + d(1) + d(2), где d(0) = (u0, 0, 0), d(1) = (0, u1, 0) и d(2) = (0, 0, f ).

Пусть ω̄h и ω̄τ – равномерные сетки с узлами xi = ih, 0 ⩽ i ⩽ N, и tm = mτ, 0 ⩽ m ⩽ M, на ĪX и ĪT , с шагами
h = X/N и τ = T/M, соответственно. Пусть ωh = ω̄h ∖ {0, X} и ω̄h = ω̄h × ω̄

τ с h := (h, τ). Пусть wi = w(xi), ym = y(tm)
и vm

i = v(xi, tm).
Пусть 𝒮h – пространство линейных конечных элементов, состоящее из функций из C(ĪX), линейных на

каждом элементе [xi−1, xi], 1 ⩽ i ⩽ N. Пусть 𝒮τ – аналогичное пространство функций, связанное с ĪT и ω̄τ.
Напомним, что C(Īa) – пространство функций w, непрерывных на Īa, с нормой ‖w‖C(Īa) = maxx∈Īa

|w(x)|; про-
странство C(Q̄T ) определяется аналогично. Для w ∈ C(ĪX) обозначим через sxw ∈ 𝒮h ее интерполянт такой, что
sxw(xi) = w(xi), 0 ⩽ i ⩽ N. Оператор st по t определяется аналогично.

Введем сеточные операторы по x и t

Bhwi =
1
6

wi−1 +
2
3

wi +
1
6

wi+1, Lhwi = −c2
0

wi−1 − 2wi + wi+1

h2 , 1 ⩽ i ⩽ N − 1,

δtym =
ym+1 − ym

τ
, δ̄tym =

ym − ym−1

τ
, δ̄tδtym =

ym+1 − 2ym + ym−1

τ2
.

Ясно, что Bh и Lh – масштабированные операторы (матрицы) масс и жесткости, соответствующие 𝒮h.
Для решения начально-краевой задачи (1.1), (1.2) рассмотрим МКЭ с заданным весом σ. Его трехслойная

по времени операторная форма такова [1]

(Bh + στ
2Lh)δtδ̄tvm + Lhvm = f h,τ,m на ωh, 1 ⩽ m ⩽ M − 1, (1.3)

(Bh + στ
2Lh)δtv0 +

τ

2
Lhv0 = uh

1 +
τ

2
f h,τ,0 на ωh, (1.4)

v0 = v(0) или v0 = u0 на ω̄h, vm
i |i=0,N = 0, 1 ⩽ m ⩽ M, (1.5)

где v(0) является решением задачи

(Bh + στ
2Lh)v(0) = uh

0 на ωh, v(0)
i |i=0,N = 0. (1.6)

Исходная проекционная форма (форма Галеркина) этого метода, основанная на σ-регуляризованном интег-
ральном тождестве для начально-краевой задачи (1.1), (1.2), здесь не требуется и поэтому опускается (см. ее
в [1]). Предполагается, что приближенное решение v = vh принадлежит пространству билинейных конечных
элементов 𝒮h ⊗ 𝒮

τ, где ⊗ – знак тензорного произведения пространств.
Здесь для w ∈ L1(IX) и z ∈ L1(IT ) используются следующие МКЭ-усреднения

wh
i =

1
h

∫︁ xi+1

xi−1

w(x)eh
i (x) dx, zτ,0 =

2
τ

∫︁ τ

0
z(t)eτ,0(t) dt, zτ,m =

1
τ

∫︁ tm+1

tm−1

z(t)eτ,m(t) dt,
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где 1 ⩽ i ⩽ N − 1, 1 ⩽ m ⩽ M − 1 и

eh
i (x) = max

{︁
1 −

⃒⃒⃒ x
h
− i

⃒⃒⃒
, 0
}︁
, eτ,m(t) = max

{︁
1 −

⃒⃒⃒ t
τ
− m

⃒⃒⃒
, 0
}︁

суть хорошо известные базисные функции-шапочки. Также f h,τ,m
i = ( f h

i )τ,m для f ∈ L1(QT ). Если w, z и f являются
распределениями на IX, IT и QT , то используются более общие формулы

wh
i = ⟨w, e

h
i ⟩, zτ,m = ⟨z, eτ,m⟩, f h,τ,m

i = ⟨ f , eh
i eτ,m⟩,

в которых справа стоят значения этих распределений на указанных базисных функциях.
C использованием масштабирования можно предполагать, что X = π. Напомним хорошо известные спек-

тральные формулы

Bhsk = βk sk, Lhsk = c2
0λk sk, βk =

2 + cos kh
3

, λk =
(︁2

h
sin

kh
2

)︁2
, (1.7)

с sk(x) = sin(kx), 1 ⩽ k ⩽ N − 1. Наложим два условия на σ:

σ ⩾
1
4
− (1 − ε20)

h2

12c2
0τ

2 , (1.8)

|σ − σN | ⩾ ε1σN, σN :=
1

12
+

h2

12c2
0τ

2 . (1.9)

В связи с первым условием напомним, что h2/12 ⩽ min
1⩽k⩽N−1

βk/λk. Здесь и ниже параметры 0 < ε0 < 1 и ε j > 0,

j = 1, 2, . . ., не зависят от h. Предполагается также, что если σ зависит от h, то |σ(h)| ⩽ σ̄ при всех h. Условие (1.8)
обеспечивает устойчивость рассматриваемого МКЭ, а условие (1.9) исключает случай σ = σN, когда уравне-
ние (1.3) имеет более высокий 4-й порядок аппроксимации O(|h|4) вместо 2-го, например, см. [9].

Пусть также c0 = 1. При d(x, t) = (α0,α1, g(t)) sin kx, где α0 и α1 – постоянные и g ∈ L1(IT ), хорошо известна
формула Фурье для решения поставленной выше начально-краевой задачи

u(x, t) =
(︁
α0 cos kt +

α1

k
sin kt +

1
k

∫︁ t

0
g(θ) sin k(t − θ) dθ

)︁
sin kx, (x, t) ∈ Q̄T . (1.10)

Выведем ее аналог для указанного выше МКЭ. Пусть ниже 1 ⩽ k ⩽ N − 1.

Лемма 1.1. Пусть d(x, t) = (α0,α1, g(t)) sin kx с g ∈ L1(IT ). Тогда верна следующая формула для решения указанного
выше МКЭ

v(x, t) =
(︁
γ0kα0 cos µkt + γ1k

α1

k
sin µkt +

γ1k

k

∫︁ t

0
g(θ)sθ sin µk(t − θ) dθ

)︁
sin kx (1.11)

при (x, t) ∈ ω̄h, с коэффициентами µk, γ0k и γ1k, заданными формулами

µk =
2
τ

arcsin
φkτ

2
, φk =

(︁
λk

βk + τ2σλk

)︁ 1
2
⩽

2

τ
√︀

1 + 4ε20βk/(τ2λk)
, (1.12)

γ0k =
1
k2φ

2
k при v0 = v(0) или γ0k = 1 при v0 = sxu(0), γ1k =

2
kτ

tg
µkτ

2
. (1.13)

Здесь и ниже для краткости зависимость коэффициентов от h и σ не указывается.

Доказательство. 1. Пусть сначала g = 0. Решение МКЭ ищется в виде

v(x, t) = (β0k cos µkt + β1k sin µkt) sin kx, (x, t) ∈ ω̄h,

где коэффициенты µk, β0k и β1k не зависят от x и t. Также µkτ определяется с точностью до 2πl, l ∈ Z; более того,
можно предполагать, что 0 ⩽ µkτ ⩽ π.

Подставим такое v в уравнения (1.3)–(1.5). В силу формул (1.7) и аналогичной формулы для δtδ̄t уравне-
ние (1.3) приводит к следующему уравнению для µk:(︁2

τ
sin
µkτ

2

)︁2
=

λk

βk + τ2σλk
. (1.14)

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 2 2025



ВЫВОД ОЦЕНОК ПОГРЕШНОСТИ СНИЗУ ДЛЯ БИЛИНЕЙНОГО МЕТОДА 143

В силу условия (1.8) имеем βk + τ
2σλk ⩾ ε20βk + (τ/2)2λk, и поскольку 0 ⩽ µk ⩽ π/τ, то верны соотношения (1.12).

В силу формулы sin kx = −(1/k2)∂2
x sin kx легко проверить, что

(sin kx)h
i =

1
k2 Lh sin kxi =

λk

k2 sin kxi, 1 ⩽ i ⩽ N − 1. (1.15)

Поэтому из соотношений для v0 следует, что β0k = γ0kα0, где γ0k задается формулой (1.13).
Уравнение (1.4) влечет алгебраическое уравнение

(βk + τ
2
σλk)

(︁
β0k

cos µkτ − 1
τ

+ β1k
sin µkτ

τ

)︁
+ β0k

τ

2
λk = α1

λk

k2 .

Поскольку 1 − cos ξ = 2 sin2(ξ/2) и sin ξ = 2 sin(ξ/2) cos(ξ/2), то с использованием (1.14) получаем, что слагаемые
с β0k сокращаются и β1k = γ1kα1/k, где γ1k задается формулой (1.13).

2. Пусть теперь α0 = α1 = 0. Имеем f h,τ,m
i = (λk/k2)gτ,m sin kxi. Пусть δmm′ – символ Кронекера, а χ+(t) = 1 при

t > 0 и χ+(t) = 0 при t ⩽ 0. При gτ,m = (2/τ)δm0 в силу уравнений МКЭ решение является тем же самым, что и
выше в п. 1 при α0 = 0, α1 = 1 и g = 0:

v(x, t) = v*(x, t) :=
γ1k

k
(sin µkt) sin kx, (x, t) ∈ ω̄h.

Дополнительно в соответствии с данным выше выводом формулы для γ1k выполняется равенство

(βk + τ
2
σλk)

{︁
δtδ̄t

(︁
γ1k

k
(sin µkt)χ+(t)

)︁}︁⃒⃒⃒
t=0
=
λk

τk2 .

Поэтому для gτ,m = (1/τ)δmm′ , 1 ⩽ m′ ⩽ M − 1, получаем

v(x, t) = v*(x, t − m′τ)χ+(t − m′τ), (x, t) ∈ ω̄h.

В общем случае для d(x, t) = (0, 0, g(t) sin kx) в силу линейности МКЭ, определения усреднений (·)τ,m и разло-
жения sθw по базису из функций-шапочек, его решение может быть записано в виде

v(x, t) =
τ

2
gτ,0v*(x, t) +

M−1∑︁
m′=1

τgτ,m
′

v*(x, t − m′τ)χ+(t − m′τ) =

=

∫︁ T

0
g(θ)

M−1∑︁
m′=0

eτ,m
′

(θ)v*(x, t − m′τ)χ+(t − m′τ) dθ =

=
γ1k

k

∫︁ T

0
g(θ)sθ[(sin µk(t − θ))χ+(t − θ)] dθ sin kx =

γ1k

k

∫︁ t

0
g(θ)sθ sin µk(t − θ) dθ sin kx

при (x, t) ∈ ω̄h, поскольку χ+(t − θ) = 0 при 0 ⩽ t ⩽ θ ⩽ T . Лемма доказана.

Отметим, что поскольку функции {sin kx}N−1
k=1 образуют базис в пространстве функций, заданных на сетке ω̄h

и равных 0 при xi = 0,π, то из доказанной леммы непосредственно следует фурье-разложение произвольного
решения МКЭ.

2. АСИМПТОТИЧЕСКИЙ АНАЛИЗ

Теперь разложим величины µk и γ jk. Ниже 𝒪(·)–величины не зависят от h и k.

Лемма 2.1. При kτ = 𝒪(1) верны асимптотические формулы

µk ≍ k, то есть ck ⩽ µk ⩽ c̄k, (2.1)

µk = k + k3
νh + 𝒪(k5|h|4) с νh =

1
24

(︀
h2 − (12σ − 1)τ2

)︀
= −

1
2

(σ − σN)τ2, (2.2)

γ jk = 1 + 𝒪(k2|h|2), j = 0, 1, (2.3)

с некоторыми 0 < c < c̄, не зависящими от h и k.
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Доказательство. Поскольку (2/π)x ⩽ sin x ⩽ x при 0 ⩽ x ⩽ π/2, то получим, что
√
λk ≍ k и µk ≍ φk. При

kτ = 𝒪(1) имеем ε20/3 ⩽ βk + στ
2λk = 𝒪(1), φk ≍ k и поэтому µk ≍ k. Более того, в силу соотношений (1.12)

получим, что µkτ/2 ⩽ (π/2)φkτ/2 ⩽ π/(2(1 + ε2)) с некоторым ε2 > 0.
Формула sin x = x − (1/6)x3 + 𝒪(|x|5) влечет разложения√︀

λk = k −
1

24
k3h2 + 𝒪(k5h4), βk = 1 −

1
6

h2
λk = 1 −

1
6

k2h2 + 𝒪(k4h4).

Как следствие

φk = k +
1

24
k3(h2 − 12στ2) + 𝒪(k5|h|4). (2.4)

Это разложение, формула arcsin x = x+(1/6)x3+𝒪(|x|5) при |x| ⩽ c1 < 1 и условие kτ = 𝒪(1) влекут разложение (2.2).
Разложение (2.3) при j = 0 следует из (2.4), а при j = 1 оно следует из формул tg x = x + 𝒪(|x|3) при

|x| ⩽ π/(2(1 + ε2)) и (2.2).

Следствие 2.1. Пусть ниже выполнены оба условия (1.8), (1.9). Для любого α > 0, не зависящего от h, суще-
ствует натуральное число k̄h ⩽ N − 1 такое, что k̄h ≍ |h|−2/3 и

µk̄h
= k̄h + α sgn νh + 𝒪

(︀
|h|2/3

)︀
.

Доказательство. Условие (1.9) обеспечивает, что |νh| ≍ |h|2.

Положим ρh =
(︀
α/|νh|)

)︀1/3
и возьмем |h| столь малым, что (ρh + 2)h ⩽ π (что не ограничивает общности).

Положим k̄h = [ρh] + 1, где [ρh] – целая часть ρh. Тогда 1 ⩽ k̄h ⩽ N − 1, k̄h ≍ ρh ≍ |h|−2/3 и |k̄h − ρh| ⩽ 1, и поэтому в
силу разложения (2.2) выводим

µk̄h
− k̄h − α sgn νh = (k̄3

h − ρ
3
h)νh + 𝒪(k̄5

h|h|
4) = 𝒪

(︀
|h|2/3

)︀
.

При любых a > 0, (ξ1, ξ2) ⊂ IX и w ∈ W1,1(IX) справедлива оценка⃒⃒⃒ ∫︁ ξ2

ξ1

|w(x) sin ax| dx −
2
π

∫︁ ξ2

ξ1

|w(x)| dx
⃒⃒⃒
⩽

(︁
‖w′‖L1(IX ) +

(︀
1 +
π

2
)︀
‖w‖L∞(IX )

)︁4
a
. (2.5)

Достаточно проверить упрощенную оценку при (ξ1, ξ2) = IX, с заменой 4/a на 2/a. С этой целью предста-
вим ĪX как объединение сегментов ∆l =

[︀
(l−1)π/a, lπ/a

]︀
, 1 ⩽ l ⩽ l̄ :=

[︀
aX/π

]︀
, и ∆ =

[︀
l̄π/a, X

]︀
. Упрощенная оценка

(2.5) верна потому, что с использованием интегральной теоремы о среднем и равенства
∫︀
∆l
| sin ax| dx = 2/a имеем⃒⃒⃒ ∫︁

∆l

|w(x) sin ax| dx −
2
π

∫︁
∆l

|w(x)| dx
⃒⃒⃒
⩽

2
a

⃒⃒
|w(ξ1l)| − |w(ξ2l)|

⃒⃒
⩽

2
a
‖w′‖L1(∆l), 1 ⩽ l ⩽ l̄,

при некоторых ξ1l, ξ2l ∈ ∆l и ∫︁
∆

|w(x) sin ax| dx ⩽
∫︁
∆

|w(x)| dx ⩽ ‖w‖L∞(IX )
π

a
.

Оценка (2.5) с cos вместо sin и множителем (3/2)(1 + π/2) вместо 1 + π/2 доказывается аналогично и также
используется ниже.

Теперь введем параметр ηk = k + sgn νh, наборы данных

d(0)
k = (sin kx, 0, 0), d(1)

k = (0, sin kx, 0), d(2)
k = (0, 0, (sin kx) sin ηkt)

и функции ζ j(t) = 2 sin t, j = 0, 1, и ζ2(t) = 1 − cos t. Пусть (u − vh)[d] – погрешность МКЭ при заданном наборе
данных d; напомним, что vh = sxstvh в Q̄T .

Ключевым в доказательстве оценок погрешности снизу служит следующий результат.

Теорема 2.1. Пусть j = 0, 1, 2. Для некоторого натурального числа k = k̄h ≍ |h|−2/3 верны следующие формулы:

‖(u − vh)[d( j)
k ]‖L1(Π) = k−p j

(︁ 4
π2 ‖ζ j‖L1(Π) + 𝒪(|h|2/3)

)︁
, (2.6)

‖∂x(u − vh)[d( j)
k ]‖L1(Π) = k−p j+1

(︁ 4
π2 ‖ζ j‖L1(Π) + 𝒪(|h|1/3)

)︁
, (2.7)

с p0 = 0 и p1 = p2 = 1, для любого прямоугольника Π = (ξ1, ξ2) × (θ1, θ2) ⊂ QT , не зависящего от h, где 𝒪-слагаемые
не зависят от Π. Ниже берутся прямоугольники Π только такого вида.

Формулы (2.6) и (2.7) сохраняют силу при замене u на sxu, stu или sxstu.
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Доказательство. 1. Пусть kτ = 𝒪(1) и (x, t) ∈ Q̄T (а не только (x, t) ∈ ω̄h). Сначала установим представление

(u − vh)[d(0)
k ](x, t) = (cos kt − cos µkt) sin kx + rk(x, t) (2.8)

с оценкой остаточного члена
‖rk‖C(Q̄T ) = 𝒪(k2|h|2). (2.9)

В силу формул типа Фурье (1.10), (1.11) имеем

rk(x, t) = (cos µkt) sin kx − γ0k(st cos µkt)sx sin kx = (cos µkt − st cos µkt) sin kx+

+(sin kx − sx sin kx)stcos µkt + (1 − γ0k)(st cos µkt)sx sin kx. (2.10)

Хорошо известные оценки погрешности линейной интерполяции

‖w − sxw‖C(Īπ) ⩽
1
8

h2‖∂2
xw‖C(Īπ), ‖y − sty‖C(ĪT ) ⩽

1
8
τ

2‖∂2
t y‖C(ĪT ),

см., например, [10], и асимптотические формулы (2.1) и (2.3) влекут оценку (2.9). При замене u на sxu, stu или
sxstu в (2.8) вывод оценки (2.9) меняется незначительно.

2. Далее, пусть сначала ηk в определении d(2)
k будет любым таким, что |ηk | = 𝒪(k). Положим

y(a)(t) :=
∫︁ t

0
(sin ηkθ) sin a(t − θ) dθ, ya(t) :=

∫︁ t

0
(sin ηkθ)sθ sin a(t − θ) dθ.

Отметим, что прямое вычисление интеграла приводит к формуле

y(a)(t) = −
1
2

sin ηkt − sin at
ηk − a

+
1
2

sin ηkt + sin at
ηk + a

, |a| ≠ |ηk |. (2.11)

Установим представление

k(u − vh)[d(2)
k ](x, t) = (y(k)(t) − y(µk)(t)) sin kx + rk(x, t); (2.12)

здесь и ниже через rk обозначаются различные остаточные члены, подчиняющиеся оценке (2.9). В силу формул
(1.10), (1.11) последний остаточный член можно записать в виде

rk(x, t) =
{︀(︀

y(µk) − yµk

)︀
(t) + (yµk − styµk )(t)

}︀
sin kx+

+(sin kx − sx sin kx)styµk (t) + (1 − γ1k)styµk (t)sx sin kx.

Этот rk удовлетворяет оценке (2.9) в силу тех же самых оценок и асимптотических формул, что и в п. 1, вместе
с формулой y′′µk

(t) = 𝒪(k2), которая следует из последовательных формул

y′a(t) = a
∫︁ t

0
(sin ηkθ)sθ cos a(t − θ) dθ + (sin ηkt)(sθ sin a(t − θ))|θ=t,

y′′a (t) = −a2ya(t) + ηk(cos ηkt)(sθ sin a(t − θ))|θ=t + sin ηkt
(︁

2asθ cos a(t − θ))|θ=t +
2
τ

sin
aτ
2

Ca(t)
)︁
,

где Ca(t) := cos a(t − (m − 0.5)τ) на интервале (tm−1, tm), 1 ⩽ m ⩽ M. Здесь использовано разложение sθw по базису
из функций-шапочек. Последняя оценка для rk сохраняет силу при замене u на sxu, stu или sxstu в (2.12).

3. Пусть µ̄k таково, что µ̄k = µk +𝒪(k2|h|2). Заметим, что замена µk на µ̄k в главных членах представлений (2.8)
и (2.12) не ухудшает оценку остаточных членов.

Теперь выберем число k = k̄h согласно следствию 2.1. Положим µ̄k = k+α sgn νh иηk = (k+µ̄k)/2 = k+(α/2) sgn νh
и воспользуемся явной формулой (2.11). Главный член представления (2.12) с заменой µk на µ̄k можно упростить
следующим образом:

1
µ̄k − k

(︁
sin µ̄kt − 2 sin

k + µ̄k

2
t + sin kt

)︁
sin kx =

2
α sgn νh

(︀
cos
αt
2
− 1

)︀
(sin ηkt) sin kx,

где k = k̄h. Фиксируем также α := 2.
Следовательно, при j = 0, 2 получим

kp j
⃒⃒
(u − vh)[d( j)

k ](x, t)
⃒⃒
= |ζ j(t) sin ηkt|| sin kx| + 𝒪(|h|2/3) при k = k̄h, (2.13)
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где функция ζ j(t) была введена выше и 𝒪-слагаемое не зависит от (x, t). Чтобы вывести формулу (2.6), остается
применить оценку (2.5) и аналогичную ей оценку по t. В соответствии с упомянутым выше в формуле (2.13) и
поэтому также в формуле (2.6) можно заменить u на sxu, stu или sxstu.

4. Для вывода формулы (2.7) можно применить ∂x к представлениям (2.8) и (2.12). Поскольку ∂xvh кусочно
постоянна по x, то нужно исключить x ∈ ωh. Например, при j = 0 из (2.10) получим

∂xrk(x, t) = (cos µkt − st cos µkt)∂x sin kx + ∂x(sin kx − sx sin kx)stcos µkt + (1 − γ0k)(st cos µkt)∂xsx sin kx.

Далее, очевидно, что
∂xsx sin kx = ∂x sin kx + 𝒪(k2h) = k(cos kx + 𝒪(kh))

равномерно по x ∈ Īπ∖ωh. Следовательно, при k|h| = 𝒪(1) получим

∂x(u − vh)[d(0)
k ](x, t) = k

(︀
(cos kt − cos µkt) cos kx + 𝒪(k|h|)

)︀
(2.14)

равномерно по (x, t) ∈ (Īπ∖ωh) × ĪT , что в итоге влечет формулу (2.7).
При замене u на sxu в формуле (2.7) ее вывод несколько упрощается. Например, при j = 0 имеем

∂x(sxu − vh)[d(0)
k ](x, t) = (cos kt − cos µkt + ρk(t))∂xsx sin kx,

где ‖ρk‖C(ĪT ) = 𝒪(k2|h|2), вместо (2.8), (2.9). Следовательно, при k|h| = 𝒪(1) формула (2.7) сохраняет силу при
замене u на sxu.

Формула (2.7) также сохраняет силу при замене u на stu или st sxu. Чтобы в этом убедиться, достаточно до-
полнительно оценить ∂x(u − stu) и ∂x(sxu − sxstu). Например, при j = 0 имеем

|∂x(u − stu)| = |(cos kt − st cos kt)∂x sin kx| ⩽ k2
τ

2k = k𝒪(kτ)

при kτ = 𝒪(1). Величина ∂x(sxu − sxstu) = (cos kt − st cos kt)∂xsx sin kx оценивается точно также.

5. Случай j = 1 в (2.6), (2.7) рассматривается совершенно аналогично j = 0. Теорема доказана.

3. ОЦЕНКИ ПОГРЕШНОСТИ СНИЗУ

Чтобы сформулировать оценки погрешности снизу по отношению к начальным функциям u0 и u1, введем
некоторые пространства Гёльдера и их подпространства. Пусть Cℓ0(Īa) при целом ℓ ⩾ 0 состоит из функций
w ∈ C(Īa), имеющих ∂ℓxw ∈ C(Īa), с ∂2k

x w|x=0,a = 0 при 0 ⩽ 2k ⩽ ℓ, и снабжено нормой ‖w‖Cℓ0(Īa) := ‖w‖C(Īa) + ‖∂
ℓ
xw‖C(Īa).

Следует обратить внимание на то, что здесь и ниже понимание нижнего индекса 0 не совсем стандартно и от-
носится к обнулению функций и их производных только четного порядка на границе (или ее частях).

Пусть C0(Īa) = C(Īa). Пространство Cλ(Īa) при 0 < λ < 1 состоит из функций w ∈ C(Īa) с конечной нормой

‖w‖Cλ(Īa) = ‖w‖C(Īa) + |w|
(γ)
Īa
, |w|(γ)Īa

:= sup
0<γ<a

γ
−λ‖w(x + γ) − w(x)‖C(Īa−γ).

Пусть также Cλ0(Īa) – подпространство функций w ∈ Cλ(Īa) с w|x=0,a = 0, снабженное той же нормой. Пусть Cλ0(Īa)
при −1 ⩽ λ < 0 – это пространство распределений w = ∂xW таких, что W ∈ Cλ+1(Īa) и

∫︀
Ia

W(x) dx = 0, снабженное
нормой ‖w‖Cλ0(Īa) = ‖W‖Cλ+1(Īa); здесь нижний индекс 0 используется только для единообразия записи пространств.

Пространство Cλ0(Īa) при нецелом λ > 1 состоит из функций w ∈ Cℓ0(Īa) с ℓ = [λ], имеющих конечную норму
‖w‖Cλ0(Īa) = ‖w‖C(Īa) + ‖∂

ℓ
xw‖Cλ−ℓ(Īa).

Теорема 3.1. Пусть выполнены условия (1.8), (1.9) на σ и 0 < δ0 ⩽ πT произвольно. Существуют h0 > 0 и c1 > 0
такие, что верны следующие оценки погрешности снизу по отношению к начальным функциям u0 и u1:

sup
u j(x)=sin kx, k∈N

‖(u − vh)[d( j)]‖L1(Π)

‖u j‖Cλ− j
0 (Īπ)

⩾ c1|h|2λ/3 при всех 0 ⩽ λ ⩽ 3, j = 0, 1, (3.1)

sup
u j(x)=sin kx, k∈N

‖∂x(sxu − vh)[d( j)]‖L1(Π)

‖u j‖Cλ− j
0 (Īπ)

⩾ c1|h|2(λ−1)/3 при всех 1 ⩽ λ ⩽ 4, j = 0, 1, (3.2)

при |h| ⩽ h0 и для любого прямоугольника Π ⊂ QT с площадью |Π| ⩾ δ0.
Оценка (3.1) сохраняет силу при замене u на sxu, stu или sxstu. Оценка (3.2) сохраняет силу при замене sxu на sxstu,

u или stu.
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Эта теорема доказывается ниже вместе с последующей теоремой.
Чтобы сформулировать оценки погрешности снизу по отношению к свободному члену f , потребуется вве-

сти пространства и подпространства типа Гёльдера функций с доминирующей смешанной гладкостью порядка
λ1 по x и λ2 по t. Они существенно уже соответствующих стандартных пространств Гёльдера функций гладкости
λ1 + λ2 и по x, и по t.

Во-первых, пусть пространство Cλ,00 (Q̄T ), λ ⩾ −1, определяется совершенно аналогично Cλ0(Īa), с заменой
пространств C(Īa) и C(Īa−γ) и их норм на C(Q̄T ) и C(Īπ−γ × ĪT ) и соответствующие нормы. Пусть S Cλ1,λ2

0 (Q̄T ) при
λ2 = 0 – подпространство функций f ∈ Cλ1,0

0 (Q̄T ) с f |t=0 = 0 при λ1 ⩾ 0, либо распределений f = ∂xF при
−1 ⩽ λ1 < 0, где

∫︀
Iπ

F(x, t) dx = 0 при всех 0 ⩽ t ⩽ T и F|t=0 = 0.

Далее, S Cλ1,λ2
0 (Q̄T ) при λ1 ⩾ 0 и 0 < λ2 < 1 состоит из функций f ∈ S Cλ1,0

0 (Q̄T ) с конечной нормой

‖ f ‖S Cλ1 ,λ20 (Q̄T ) = ‖ f ‖Cλ1 ,00 (Q̄T ) + | f |
(λ1,λ2)
Q̄T
, | f |(λ1,λ2)

Q̄T
:= sup

0<γ2<T
γ
−λ2
2 ‖ f (x, t + γ2) − f (x, t)‖Cλ1 ,00 (Q̄T−γ2 ).

Пространство S Cλ1,λ2
0 (Q̄T ) при λ1 ⩾ 0 и −1 ⩽ λ2 < 0 состоит из распределений f = ∂tG таких, что

G ∈ S Cλ1,λ2+1
0 (Q̄T ) (в частности, G|t=0 = 0), и снабжено нормой ‖ f ‖S Cλ1 ,λ20 (Q̄T ) = ‖G‖S Cλ1 ,λ2+1

0 (Q̄T ).

Пространство S Cλ1,λ2
0 (Q̄T ) при λ1 ⩾ 0 и λ2 ⩾ 1 состоит из функций f ∈ Cλ1,0

0 (Q̄T ), имеющих ∂ℓ2t f ∈ Cλ1,0
0 (Q̄T ),

ℓ2 = [λ2], и таких, что ∂2k2
t f |t=0 = 0, 0 ⩽ 2k2 ⩽ ℓ2, с конечной нормой

‖ f ‖S Cλ1 ,λ20 (Q̄T ) = ‖∂
ℓ2
t f ‖Cλ1 ,00 (Q̄T ) + |∂

ℓ2
t f |(λ1,λ2−ℓ2)

Q̄T
+

∑︁
1⩽2k2−1⩽ℓ2−1

‖∂2k2−1
t f |t=0‖Cλ1+λ2−2k2−2

0 (Īπ)
.

Здесь некоторые дополнительные предположения о гладкости производных f по времени при t = 0 наложены
в соответствии с [1].

Наконец, пространство S Cλ1,λ2
0 (Q̄T ) при −1 ⩽ λ1 < 0 и λ2 ⩾ 0 состоит из распределений f = ∂xF таких, что

F ∈ S Cλ1+1,λ2 (Q̄T ),
∫︀

Iπ
F(x, t) dx = 0 при всех 0 ⩽ t ⩽ T , и снабжено нормой ‖ f ‖S Cλ1 ,λ20 (Q̄T ) = ‖F‖S Cλ1+1,λ2 (Q̄T ). Здесь про-

странство S Cλ1+1,λ2 (Q̄T ) отличается от своего подпространства S Cλ1+1,λ2
0 (Q̄T ) тем, что опущены все предположе-

ния об обнулении F и ее производных по времени при x = 0,π, но сохраняет прежнее аналитическое выражение
для нормы.

При λ ⩾ 0 введем множество Λλ−1 индексов (λ1, λ2) таких, что λ1 ⩾ −1, λ2 ⩾ −1, λ1 + λ2 = λ − 1, а также λ1 ⩾ 0
или λ2 ⩾ 0, и норму в соответствующем пересечении введенных выше пространств с одинаковой суммарной
гладкостью

‖ f ‖𝒮λ−1
0 (Q̄T ) = sup

(λ1,λ2)∈Λλ−1

‖ f ‖S Cλ1 ,λ20 (Q̄T ).

Случай λ1, λ2 ∈ [−1, 0) (возникающий при 0 ⩽ λ < 1) можно было бы также охватить, но здесь он опущен.

Теорема 3.2. Пусть выполнены условия (1.8), (1.9) на σ и 0 < δ0 ⩽ πT произвольно. Существуют h0 > 0 и c1 > 0
такие, что верны следующие оценки погрешности снизу по отношению к f :

sup
f (x,t)=(sin kx) sin(k±1)t, k∈N, k⩾2

‖(u − vh)[d(2)]‖L1(Π)

‖ f ‖𝒮λ−1
0 (Q̄T )

⩾ c1|h|2λ/3 при всех 0 ⩽ λ ⩽ 3, (3.3)

sup
f (x,t)=(sin kx) sin(k±1)t, k∈N, k⩾2

‖∂x(sxu − vh)[d(2)]‖L1(Π)

‖ f ‖𝒮λ−1
0 (Q̄T )

⩾ c1|h|2(λ−1)/3 при всех 1 ⩽ λ ⩽ 4, (3.4)

при |h| ⩽ h0 и для любого прямоугольника Π ⊂ QT с |Π| ⩾ δ0.
Оценка (3.3) сохраняет силу при замене u на sxu, stu или sxstu. Оценка (3.4) сохраняет силу при замене sxu на sxstu,

u или stu.

Отметим, что оценки (3.2) и (3.4) с u или stu вместо sxu представляют интерес только при 1 ⩽ λ ⩽ 5/2.

Доказательство. Пусть сначала k ∈ N, k ⩾ 2, 0 ⩽ α ⩽ 1 и γ > 0. Поскольку |a − b| ⩽ 2(max{|a|, |b|})1−α|a − b|α, то
справедливы оценки

max
0⩽x⩽π

| sin k(x + γ) − sin kx| ⩽ 2kαγα, max
t⩾0
| sin(k ± 1)(t + γ) − sin(k ± 1)t| ⩽ 3kαγα.

Они сохраняют силу при замене sin на cos, что используется ниже.
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Чтобы охватить случай данных-распределений, применим также очевидные формулы

sin kx = ∂x(−k−1 cos kx), где
∫︁ π

0
cos kx dx = 0, и sin(k ± 1)t = (k ± 1)−1∂t

(︀
1 − cos(k ± 1)t

)︀
.

Следовательно, справедливы оценки

‖ sin kx‖Cλ0(Īπ) ⩽ ckλ, ‖(sin kx) sin(k ± 1)t‖𝒮λ0 ⩽ ckλ, λ ⩾ −1. (3.5)

Теперь фиксируем некоторое 0 < δ0 ⩽ πT . Применим теорему 2.1, выберем k = k̄h в соответствии с ней и
получим оценки снизу

‖(u − vh)[d( j)
k ]‖L1(Π) ⩾ c1k−p j , ‖∂x(sxu − vh)[d( j)

k ]‖L1(Π) ⩾ c1k−p j+1, j = 0, 1, 2,

при |h| ⩽ h0 с достаточно малым h0 > 0 и некотором c1 > 0, и для любого прямоугольника Π ⊂ QT с |Π| ⩾ δ0. Из
оценок (3.5) при k = k̄h следует, что

‖(u − vh)[d( j)
k ]‖L1(Π)

‖ sin kx‖Cλ− j
0 (Īπ)

⩾
c1

kλ
при всех 0 ⩽ λ ⩽ 3,

‖∂x(sxu − vh)[d( j)
k ]‖L1(Π)

‖ sin kx‖Cλ− j
0 (Īπ)

⩾
c1

kλ−1 при всех 1 ⩽ λ ⩽ 4,

при j = 0, 1 и

‖(u − vh)[d(2)
k ]‖L1(Π)

‖(sin kx) sin ηkt‖𝒮λ−1
0 (Q̄T )

⩾
c1

kλ
при всех 0 ⩽ λ ⩽ 3,

‖∂x(sxu − vh)[d(2)
k ]‖L1(Π)

‖(sin kx) sin ηkt‖𝒮λ−1
0 (Q̄T )

⩾
c1

kλ−1 при всех 1 ⩽ λ ⩽ 4.

Поскольку k̄h ≍ |h|−2/3, то эти оценки немедленно влекут оценки (3.1), (3.2) и (3.3), (3.4).
Возможность замен, упомянутых в теоремах 3.1 и 3.2, следует из теоремы 2.1. Это завершает доказательство

указанных теорем.

Замечание 3.1. Легко видеть, что
∫︀ tm

tm−1
|sty| dt ⩽ 0.5τ(|ym−1| + |ym|), 1 ⩽ m ⩽ M, для функции y, заданной на ω̄τ.

Как следствие, верно неравенство

‖sty‖L1(ĪT ) ⩽ ‖y‖L1(ω̄τ) := 0.5τ(|y0| + |yM |) + τ
M−1∑︁
m=1

|ym|,

где справа стоит сеточная L1-норма на ω̄τ. Верно и аналогичное неравенство для ω̄h. Поэтому, например, при
Π = QT , в силу возможности указанных в теоремах 3.1 и 3.2 замен, оценки (3.1) и (3.3) сохраняют силу, если в них
интегральные L1-нормы по x и (или) t заменить на соответствующие сеточные L1-нормы; оценки (3.2) и (3.4)
также сохраняют силу, если в них интегральную L1-норму по t заменить на сеточную L1-норму. Это представляет
интерес в связи с оценками погрешности в [1].
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Abstract. We study a three-level in time bilinear finite element method with weight for an initial-boundary
value problem for the one-dimensional wave equation. We derive lower error estimates of orders (h+ τ)2λ/3,
0 ⩽ λ ⩽ 3 in the L1 and W1,1

h norms. In them, each of the two initial functions or the free term in the equation
belongs to Hölder-type spaces of the corresponding orders of smoothness. They substantiate the accuracy in
order of the corresponding known error estimates (from above) of the finite element method with a weight
of the second-order approximation for second-order hyperbolic equations, as well as the impossibility of
improving them with the maximum weakening of the degree of summability in the error norms and its
maximum strengthening in the data norms. The derivation is based on the Fourier method.
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