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В работе рассматривается модель стабильных реберных подмножеств (“матчингов”) в двудольном графе
G = (V, E), в котором предпочтения для вершин одной доли (“фирм”) задаются при помощи функций выбора
со стандартными свойствами консистентности, заменяемости и кардинальной монотонности, а предпочте-
ния для вершин другой доли (“работников”) – при помощи линейных порядков. Для такой модели дается
комбинаторное описание структуры ротаций и предлагается алгоритм построения посета ротаций с оценкой
временно́й сложности O(|E|2) (включая обращения к оракулам, связанных с функциями выбора). Как след-
ствие, можно получить “компактное” аффинное представление стабильных матчингов и эффективно решать
смежные задачи. Библ. 21.
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1. ВВЕДЕНИЕ

Исследования в области стабильных контрактов на двусторонних рынках начались с классической работы
Гейла и Шепли [1] о стабильных марьяжах. В этой модели и ее естественных обобщениях типа “один-много”
(one-to-many) и “много-много” (many-to-many) рассматривается двудольный граф G = (V, E), вершины кото-
рого интерпретируются как “агенты” рынка, а ребра – как возможные “контракты” между парами агентов.
Предпочтения агента v ∈ V на множестве доступных ему контрактов (инцидентных ребер) Ev задаются строгим
линейным порядком, число выбираемых контрактов ограничено заданной квотой q(v). Допустимое по квотам
множество контрактов X ⊆ E считается стабильным, если никакой контракт из дополнения E − X не является
более предпочтительным для обеих сторон по сравнению с некоторыми их тех, что они выбрали.

С тех пор задачи о стабильности на двудольных графах с линейными предпочтениями в вершинах заслужи-
ли широкую популярность; обзоры результатов по этой теме представлены, например, в работах [2, 3]. Здесь
из значительных установленных свойств можно выделить следующие: стабильное множество контрактов су-
ществует при любых квотах; совокупность стабильных множеств образует дистрибутивную решетку при есте-
ственном сравнении; оптимальные стабильные множества для каждой из сторон рынка могут быть построены
эффективным алгоритмом. (Мы называем алгоритм эффективным, если число операций, или время, которое
он затрачивает, ограничено сверху полиномом от |V |, |E|.)

Для определенности в разбиении множества вершин V на две доли (независимые множества, хроматические
классы) будем обозначать эти доли как W и F, называя элементы в них работниками (workers) и фирмами (firms),
соответственно. (В классической модели с единичными квотами, рассматриваемой в [1], вершины разных до-
лей интерпретируются как лица “мужского” и “женского” пола.) Любое подмножество ребер X ⊆ E будем для
краткости именовать матчингом (отходя от стандартного определения последнего в литературе) и будем назы-
вать стабильное множество ребер стабильным матчингом. Подчеркнем, что в этой работе мы рассматриваем
матчинги только в двудольных графах.

Существенно более богатый класс моделей стабильности на двудольных графах возникает при переходе от
линейных предпочтений агентов к предпочтениям, определяемым функциями выбора. Для каждой вершины
v ∈ V функция выбора (ФВ) – это оператор Cv на 2Ev , выбирающий в каждом подмножество ребер Z ⊆ Ev “прием-
лемую” (более предпочтительную) часть Cv(Z) ⊆ Z. Как правило, на функцию выбора Cv накладываются акси-
омы консистентности и заменяемости, что позволяет выстроить теорию стабильных матчингов, обобщающую
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базовые результаты для моделей с линейными предпочтениями. (Отметим, что указанная пара аксиом экви-
валентна свойству независимости от пути, восходящему к Плотту [7].) Первоначальное развитие этой теории
осуществлялось в 1980е годы, главным образом в работах Келсо и Крауфорда [4], Рота [5] и Блэра [6]. В част-
ности, в них показывалось, что множество стабильных матчингов непусто и образует решетку.

К важному последующему вкладу следует отнести работы Алкана [8, 9] начала 2000х годов; в них показано,
что при добавлении третьей аксиомы квотируемости, или более слабой аксиомы кардинальной монотонности,
решетка стабильных матчингов становится дистрибутивной. Это ввиду известной теоремы Биркхофа [10] вле-
чет представимость стабильных матчингов в виде идеалов некоторого посета.

Ранее представление такого рода было продемонстрировано в простейшем случае – для стабильных марья-
жей – Ирвингом и Лейтером в работе [11]. В ней было показано, что: (а) соответствующий посет образован т.н.
ротациями – циклами, связывающими “соседние” стабильные матчинги; (б) число ротаций не превосходит |E|;
и (в) посет ротаций (дающий “компактное представление” множества стабильных марьяжей) может быть по-
строен эффективно. (В то же время, в [11] установлено, что задача определения числа стабильных матчингов
графа является труднорешаемой, #P-трудной.) В последующей работе [12] было объяснено, что с помощью
посета ротаций можно эффективно решать задачу минимизации линейной функции на множестве стабильных
марьяжей; здесь привлекается метод Пикара [13], дающий сведение к классической задаче о минимальном раз-
резе.

В недавней работе [14] Фаэнза и Цанг провели углубленное исследование ротаций, их посетов и приложе-
ний для общих моделей Алкана в [8, 9]. Они рассматривали стабильные матчинги, порождаемые функциями
выбора, в двух ситуациях: 1) ФВ для всех вершин плоттовы (т.е. подчиняются аксиомам консистентности и
заменяемости) плюс кардинально монотонные; 2) ФВ для всех вершин плоттовы, и кроме того, для вершин
одной доли, скажем, F, выполняется аксиома кардинальной монотонности, а для вершин другой доли W – ак-
сиома квотируемости. В первом случае мы будем применять термин “общая булева модель” (ОБМ), а во втором
случае – “специальная булева модель” (СБМ). Здесь термин “булевость” отражает то, что мы имеем дело с под-
множествами в E или, эквивалентно, с 0, 1 функциями на E, в отличие от моделей, где допускаются стабильные
функции с более общими значениями (скажем, вещественными или целочисленными).

В качестве основных результатов в [14], касающихся ОБМ, получены следующие: уточнена структура рота-
ций (которые не обязательно являются простыми циклами графа); показано, что множество ротаций ℛ име-

ет размер O(|F||W |); установлена биекция X
ω
↦−→ I между решеткой (𝒮,≻) стабильных матчингов X и решеткой

(ℐ,⊂) идеалов I посета ротаций; показано, что отображение ω−1 дает целочисленную аффинную представи-
мость стабильных матчингов через идеалы посета. Последнее означает наличие целочисленной E × ℛ матри-
цы A, для которой выполняется x = Au + x0, где x и u – характеристические векторы (в пространствах RE и Rℛ,
соответственно) стабильного матчинга и идеала, связанных отношением ω, а x0 – характеристический вектор
W-оптимального стабильного матчинга. Более того, замечено, что матрица A имеет полный столбцовый ранг,
откуда следует, что многогранник стабильных матчингов аффинно конгруэнтен порядковому многограннику
(order polytope) Стэнли [15].

Эти результаты усиливаются для СБМ. А именно, в [14] показывается, что в этом случае посет ротаций и
матрица A аффинного представления могут быть построены эффективно. Здесь предполагается, что функции
выбора заданы посредством оракулов, причем при обращении к оракулу для Cv (v ∈ V) с произвольным множе-
ством Z ⊆ Ev он выдает значение Cv(Z) за “оракульное время”, полиномиальное от |Z|. Более того, такое время
условно измеряется константой O(1) (как обычно принято в подобных задачах, где оценивается только число
обращений к оракулам, игнорируя сложность их выполнения). При этих предположениях время построения
посета и матрицы оценивается в [14] как O(|F|3|W |3). Аналогично моделям с линейными предпочтениями, это
дает возможность для СБМ эффективно решать задачи линейной оптимизации на множестве стабильных мат-
чингов.

В настоящей работе рассматривается облегченный вариант СБМ. Как и в полной версии, предпочтения в
долях графа G задаются различно. А именно, каждая вершина v доли F снабжена функцией выбора Cv на 2Ev ,
удовлетворяющей аксиомам плоттовости и кардинальной монотонности (подобно ОБМ и СБМ). Как и преж-
де, все эти ФВ задаются оракулами. В свою очередь, для каждой вершины v доли W имеется квота q(v) и пред-
почтения на множестве Ev заданы линейным порядком. Мы условно именуем модель стабильности при таких
условиях комбинированной булевой моделью (сокращенно, КБМ).

Следует отметить, что модель такого рода с единичными квотами вершин в W возникает в результате редук-
ции задачи с т.н. последовательным выбором (sequential choice) в вершинах одной доли, описанной в работе [16].

Основная цель нашей работы состоит в разработке для КБМ относительно прозрачных методов построения
ротаций и их посета, а также доказательства биекции между решетками стабильных матчингов и идеалов посета.
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При этом наши алгоритмы имеют невысокую временную сложность; в частности, посет ротаций строится за
время O(|E|2) (для сравнения аналогичная задача для СБМ решается в [14] за время O(|F|3|W |3) ≈ O(|E|3)).

Работа организована следующим образом.
Раздел 2 содержит базовые определения и постановки, касающиеся КБМ. В разд. 3 излагаются утверждения

и средства, приводящие к определению ротаций. В разд. 4 объясняется конструкция посета ротаций и доказы-
вается теорема об изоморфизме решеток стабильных матчингов и идеалов посета. Раздел 5 в основном посвя-
щен алгоритмическим аспектам. Здесь показывается, что посет ротаций может быть построен за время O(|E|2),
а начальный стабильный матчинг (оптимальный для W) – за время O(|V ||E|). Основываясь на конструкции по-
сета ротаций, в разд. 6 мы демонстрируем аффинную представимость решетки стабильных матчингов и даем
описание структурных элементов многогранника стабильных матчингов. Следует заметить, что в разд. 3–6 мы
для упрощения изложения рассматриваем случай единичных квот для вершин доли W. В разд. 7 дается обобще-
ние на случай произвольных квот при линейных предпочтениях в доле W (что не вызывает больших усилий).
В заключительном разд. 8, следуя [16], дается описание вышеупомянутой модели с последовательными функ-
циями выбора и ее редукция к КБМ. Затем мы указываем следствия для этой модели из полученных результатов
для КБМ.

2. НАЧАЛЬНЫЕ ОПРЕДЕЛЕНИЯ И ПОСТАНОВКИ

В рассматриваемой модели нам даны: конечный двудольный граф G = (V, E) с разбиением множества вер-
шин V на два независимых подмножества (доли) F и W, называемых множествами фирм и работников, соот-
ветственно. Без ограничения общности, можно считать, что граф G не имеет кратных ребер (см. замечание 1 в
конце раздела); также можно считать, что G связен. В частности, |V | − 1 ≤ |E| ≤

(︀
|V |
2

)︀
. Ребро в G, соединяющее

вершины w ∈ W и f ∈ F, может обозначаться w f .
Для вершины v ∈ V обозначим через Ev множество ее инцидентных ребер. На этом множестве задаются

предпочтения вершины (“агента”) v. Предпочтения в долях F и W имеют существенные различия.

∙ (линейные предпочтения) Для вершин w ∈ W предпочтения заданы при помощи линейного порядка >w на Ew.
Если для e, e′ ∈ Ev выполняется e >w e′, мы говорим, что ребро e предпочтительнее для w, чем e′. Это аналогично
предпочтениям в классической задаче о стабильных марьяжах Гейла и Шепли [1].

∙ (функции выбора) Для f ∈ F предпочтения на E f заданы при помощи функции выбора (ФВ) C = C f :
2E f → 2E f . Она удовлетворяет нескольким стандартным условиям (аксиомам). Всегда предполагается, что это
сжимающий оператор, т.е. для любого Z ⊆ E f выполняется C(Z) ⊆ Z. Две аксиомы, касающиеся пар Z,Z′ ⊆ E f ,
выглядят так:

(A1) если Z ⊇ Z′ ⊇ C(Z), то C(Z′) = C(Z);

(A2) если Z ⊇ Z′, то C(Z) ∩ Z′ ⊆ C(Z′).

Из (A1), в частности, следует, что для любого Z ⊆ E f справедливо C(C(Z)) = C(Z). В литературе свойство (A1)
называют консистентностью, а свойство (A2) – заменяемостью, или персистентностью (последний термин
встречается, например, в [17]). Как показано в [18], выполнение (A1) и (A2) эквивалентно свойству незави-
симости от пути, или плоттовости (восходящее к работе [7]); в нашем случае это выглядит так:

для любых Z,Z′ ⊆ E f справедливо C(Z ∪ Z′) = C(C(Z) ∪ Z′). (2.1)

Еще одна аксиома известна под названием кардинальной монотонности:

(A3) если Z ⊇ Z′, то |C(Z)| ≥ |C(Z′)|.

Важный частный случай (A3) – условие квотируемости; оно накладывается, когда задано число (квота)
q( f ) ∈ Z>0, и выгладит так:

(A4) для любого Z ⊆ E f справедливо |C(Z)| = min{|Z|, q( f )}.

Легко проверить, что указанные аксиомы выполняются для вершин w ∈ W; в этом случае задается квота
q(w) ∈ Z>0, и оператор Cw действует в соответствии с порядком >w, а именно: в множестве Z ⊆ Ew выбираются
min{q(w), |Z|} старших элементов.

В нашем изложении, вплоть до разд. 7, мы для простоты будем как правило рассматривать КБМ с единич-
ными квотами для всех w ∈ W, в то же время функции C f , f ∈ F, будут произвольными при условиях (A1)–(A3).
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∙ (стабильность) Для удобства изложения всякое подмножество ребер X ⊆ E будем называть матчингом. Для
v ∈ V ограничение X ⊆ E на подмножество Ev будем обозначать через Xv; иными словами, Xv = X ∩ Ev. Подмно-
жество Z ⊆ Ev назовем приемлемым, если Cv(Z) = Z; совокупность таких подмножеств обозначим 𝒜v. Это по-
нятие распространяется на подмножества во всем E; а именно, скажем, что X ⊆ E приемлемое, если таковыми
являются все его ограничения Xv, v ∈ V. Совокупность приемлемых множеств (матчингов) в E обозначается𝒜.

Для всякого v ∈ V функция выбора Cv позволяет сравнивать приемлемые множества в Ev. А именно, для
различных Z,Z′ ∈ 𝒜v скажем, что Z предпочтительнее Z′, и обозначим это как Z ≻v Z′, если

Cv(Z ∪ Z′) = Z.

Легко видеть, что отношение ≻w транзитивное.
Исходя из сравнения приемлемых подмножеств в множествах Ev, можно сравнивать приемлемые матчинги

во всем E. А именно, выбирая одну из долей в G, скажем, F, для различных X,Y ∈ 𝒜 будем писать X ≻F Y и
говорить, что X предпочтительнее Y относительно “фирм”, если для всех f ∈ F выполняется X f ⪰ f Y f . Порядок
≻W в𝒜 относительно “работников” определяется аналогично.

Определение 1. Для v ∈ V и Z ∈ 𝒜v, скажем, что ребро e ∈ Ev−Z интересное относительно Z, если e ∈ Cv(Z∪{e}).
Это понятие распространяется на приемлемые матчинги в E. А именно, при матчинге X ∈ 𝒜 ребро e = w f ∈ E−X
называется интересным для вершины (“агента”) v ∈ {w, f }, если e ∈ Cv(Xv ∪ {e}). Если ребро e = w f ∈ E − X
интересное для обеих вершин w и f , то говорят, что e блокирует X. Матчинг X ∈ 𝒜 называется стабильным,
если он не блокируется никаким ребром в E − X. Множество стабильных матчингов для рассматриваемых G =
(F ⊔W, E), >w, q(w) (w ∈ W), C f ( f ∈ F) обозначим через 𝒮 = 𝒮(G, >, q,C).

Заметим, что для v ∈ V, Z ∈ 𝒜v, e ∈ Ev − Z и Z′ := Cv(Z ∪ {e}):

(i) ребро e интересное относительно Z тогда и только тогда, когда Z′ равно либо
(a) Z ∪ {e}, либо (б) (Z − {e′}) ∪ {e} для некоторого e′ ∈ Z;

(ii) если e интересное относительно Z, то Z′ ≻v Z, и наоборот.

(2.2)

Здесь (i) следует из соотношений Cv(Z) = Z и Z′ ⊆ Z∪{e} и неравенства |Cv(Z∪{e})| ≥ |Cv(Z)| (в силу кардинальной
монотонности (A3)). Свойство (ii) следует из Cv(Z′ ∪ Z) = Cv(Z ∪ {e}) = Z′ ̸= Z.

∙ Для v ∈ V множество𝒜v, снабженное отношением предпочтения ≻v, обращается в решетку; в ней, в соот-
ветствии с изложенным в [9], для Z,Z′ ∈ 𝒜v точная верхняя грань Z ⋎ Z′ выражается как Cv(Z ∪ Z′) (в то время
как точная нижняя грань Z ⋏Z′ выражается с использованием понятия замыкания; мы это здесь не приводим).

“Прямое произведение” решеток (𝒜 f ,≻ f ) для f ∈ F дает решетку (𝒜,≻F) (в ней для X, X′ ∈ 𝒜 операции
X ⋎F X′ (join) и X ⋏F X′ (meet) относительно доли F определяются естественным образом через ограничения
X f ⋎ X′f и X f ⋏ X′f ). Аналогично определяется решетка (𝒜,≻W ) относительно доли W.

∙ Теперь мы можем сформулировать важные для дальнейшего свойства множества стабильных матчингов
𝒮; они непосредственно вытекают из соответствующих общих результатов в работе [9] (см. в ней Теорему 10).
А именно,

(a) 𝒮 непусто, и (𝒮,≻F) является дистрибутивной решеткой;

(б) (свойство полярности): порядки ≻F и ≻W противоположны, а именно: для
X,Y ∈ 𝒮, если X ≻F Y, то Y ≻W X, и наоборот;

(в) (свойство инвариантности размеров): для любой фиксированной вершины
v ∈ V число |Xv| одинаково при всех X ∈ 𝒮.

(2.3)

Мы будем обозначать минимальный и максимальный элементы в решетке (𝒮,≻F) как Xmin и Xmax, соответ-
ственно (тогда первый – наилучший, а второй – наихудший для доли W, в силу свойства полярности (2.3)(б)).

Отметим, что в случае выполнения квот (что, в частности, верно для доли W) свойство (в) в (2.3) имеет
важное усиление (ср. [17, Corollary 3]):

для вершины v ∈ V, если ФВ Cv подчиняется аксиоме квотируемости (A4) с квотой
q(v), и если для некоторого (или, что эквивалентно, любого) стабильного матчинга
X выполняется |Xv| < q(v), то множество Xv одинаково при всех X ∈ 𝒮.

(2.4)
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Замечание 1. Иногда в литературе о стабильных матчингах на графах (не обязательно двудольных) допус-
кается наличие кратных ребер, т.е. рассматриваемый граф G может быть “мультиграфом”. (Такое обобщение
может иметь разумные экономические интерпретации.) Однако достаточно простая конструкция позволяет
преобразовать G в граф G′ без кратных ребер, получая эквивалентную задачу о стабильном матчинге для G′.
Такая конструкция указана в [19] для случая линейных порядков на всех вершинах; она применима и к нашей
модели КБМ. (В силу этого мы в дальнейшем можем ограничиться обыкновенными графами, что упрощает
изложение, не ограничивая общности; в частности, ребро может обозначаться парой его концевых вершин.)
Кратко опишем данную конструкцию. В ней (каждое или желаемое) ребро e между вершинами u и v в графе G
заменяется подграфом Ke, порождаемым 6-циклом Oe с последовательностью (новых) вершин v1, . . . , v6 и двумя
дополнительными ребрами uv1 и vv4. Предпочтения в вершинах определены по кругу: ребро vi−1vi лучше vivi+1
(полагая v6 = v0); кроме того, ребро uv1 (vv4) полагается средним в тройке для v1 (соответственно, v4). Квоты
для всех новых вершин vi равны 1.

Легко проверить, что в стабильном матчинге X′ для модели с G′ все вершины vi должны быть покрыты X′.
Отсюда следует, что ребра uv1 и vv4 одновременно либо принадлежат, либо не принадлежат X′. Это естественно
порождает матчинг X для G (единственным образом), который стабилен для модели с G. Обратно, стабильный
матчинг X для G может быть преобразован в стабильный матчинг X′ для G′; здесь оба ребра uv1 и vv4 принадле-
жат X′ тогда и только тогда, когда ребро e принадлежит X. На подграфе Ke матчинг X′ определяется единствен-
ным образом за исключением случая, когда e /∈ X, и при этом ребро e – не интересное при X ни для вершины
u, ни для вершины v; пометим это как случай (*). При нем X′ может быть назначен внутри Ke двумя способами:
либо v1v2, v3v4, v5v6 ∈ X′, либо v2v3, v4v5, v6v1 ∈ X′. О связи ротаций в G′ и G будет сказано в замечании 2 в разд. 5.

3. АКТИВНЫЙ ГРАФ И РОТАЦИИ

Зафиксируем стабильный матчинг X ∈ 𝒮, отличный от Xmax. Нас интересует множество 𝒮X стабильных
матчингов X′, удовлетворяющих X′ ≻F X и при этом близких к X. Последнее означает, что X непосредствен-
но предшествует X′ в решетке (𝒮,≻F); иначе говоря, нет Y ∈ 𝒮, лежащего между X и X′, т.е. удовлетворяющего
X′ ≻F Y ≻F X. Для нахождения 𝒮X мы будет строить т.н. активный граф, в котором будет выделяться семейство
специальных циклов, называемых ротациями. Наш метод определения ротаций существенно проще и эффек-
тивнее, чем метод в [14], разработанный для более общей модели.

Определение 2. Вершину w ∈ W назовем дефицитной, если |Xw| < q(w). Иначе (при |Xw| = q(w)) будем имено-
вать вершину w полновесной; множество таких вершин обозначим через W=.

(Согласно свойству (2.3)(в), множество W= не зависит от X ∈ 𝒮. Кроме того, ввиду (2.4) для дефицитной вер-
шины w множество Xw = X ∩ Ew не зависит от X ∈ 𝒮.)

В дальнейшем, когда не возникает двусмысленности, мы для краткости будем писать ≻ вместо ≻F . Для про-
стоты изложения мы далее будем рассматривать случай единичных квот q(w) = 1 для всех w ∈ W; общий случай
квот q на W будет рассматриваться в разд. 7.

3.1. Активный граф

Для полновесной вершины w ∈ W= единственное ребро (зафиксированного) матчинга X, инцидентное w,
обозначим через xw, т.е. Xw = {xw}. Рассмотрим множество ребер e = f w ∈ Ew, удовлетворяющих следующим
свойствам:

(a) e <w xw, и (б) e интересное для f при X, т.е. e ∈ C f (X f ∪ {e}). (3.1)

Если это множество непустое, то самое лучшее ребро в нем относительно порядка >w назовем W-
допустимым для X и обозначим aw = aw(X).

Рассмотрим такое ребро aw = f w. Согласно (2.2)(i), возможны два варианта для X f и aw. Если C f (X f ∪ {aw})
выражается как (X f − {e′}) ∪ {aw} для некоторого e′ ∈ X f (вариант (б)), то ребро e′ назовем F-допустимым и
обозначим bw

f = bw
f (X). Также скажем, что bw

f ассоциировано с aw, и что пара (aw, bw
f ) образует связку, проходящую

через вершину f .
(В случае C f (X f ∪{aw}) = X f ∪{aw} ребро aw не порождает связку. Заметим также, что некоторые F-допустимые

ребра могут быть ассоциированы с двумя и более W-допустимыми ребрами, т.е. возможны различные связки
(aw, bw

f ) и (aw′ , bw′
f ), для которых bw

f = bw′
f .) Из определения допустимых ребер непосредственно следует, что

для любой связки (a, b), проходящей через вершину f ∈ F, справедливо a /∈ X f ,
b ∈ X f , и C f (X f ∪ {a}) = (X f ∪ {a}) − {b}.

(3.2)
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Пусть D = D(X) = (V, ED) – ориентированный граф, ребрами которого являются W-допустимые ребра, ори-
ентированные от W к F, и F-допустимые ребра, ориентированные от F к W; мы применяем обозначение вида
(w, f ) для первых, и ( f ,w) для вторых (где w ∈ W и f ∈ F). Применим к D следующую процедуру.

Процедура очистки. Если в текущем графе D обнаруживается вершина w ∈ W, имеющая исходящее W-
допустимое ребро aw = (w, f ), но не имеющая входящего F-допустимого ребра (вида ( f ′,w)), то удаляем
aw из D. Одновременно, если такое aw имеет ассоциированное ребро bw

f , и это ребро не участвует в других
связках, проходящих через f в текущем D, то также удаляем bw

f из D. Кроме того, удаляем из D изолирован-
ные вершины, когда они появляются. Повторяем процедуру с новым D, и т.д., пока D не стабилизируется.

Пусть Γ = Γ(X) = (VΓ, EΓ) обозначает граф D, полученный по завершении этой процедуры. Мы называем Γ
активным графом для X, и его ребра – активными ребрами. Положим WΓ := W ∩VΓ и FΓ := F ∩VΓ. Для вершины
v ∈ VΓ обозначим через δout(v) = δout

Γ (v) и δin(v) = δin
Γ (v) множества ребер в Γ, выходящих из v и входящих в v,

соответственно. Граф Γ обладает следующими свойствами:

(a) каждая вершина w ∈ WΓ удовлетворяет |δout(w)| = |δin(w)| = 1;
(б) для каждой вершины f ∈ FΓ справедливо |δout( f )| = |δin( f )|, и связки (aw, bw

f ), про-
ходящие через f , попарно не пересекаются по ребрам и дают разбиение множества
δout( f ) ∪ δin( f ) (где aw ∈ δ

in( f ) и bw
f ∈ δ

out( f )).

(3.3)

Действительно, из определения W- и F-допустимых ребер следует, что |δin(w)|, |δout(w)| ≤ 1 для всех w ∈ WΓ,
и |δin( f )| ≥ |δout( f )| для всех f ∈ FΓ. В результате поцедуры очистки неравенства в первом выражении (для w)
обращаются в 1 = |δin(w)| ≥ |δout(w)|, а вид второго выражения (неравенства для f ) сохраняется. Теперь требуемые
равенства следуют из очевидных балансовых соотношений (поскольку ребра в Γ, выходящие из W, и ребра,
входящие в F, – одни и те же, и аналогично для ребер, выходящих из F, и ребер, входящих в W).

3.2. Ротации

Из (3.3) следует, что активный граф Γ = Γ(X) декомпозируется в множество попарно непересекающихся по
ребрам ориентированных циклов, где каждый цикл L = (v0, e1, v1, . . . , ek, vk = v0) однозначно строится естествен-
ным образом, а именно: для i = 1, . . . , k, если vi ∈ WΓ, то {ei} = δ

in(vi) и {ei+1} = δ
out(vi), а если vi ∈ FΓ, то пара

(ei, ei+1) образует связку, проходящую через vi. Заметим, что все ребра в L различные, но L может самопересе-
каться в вершинах доли F. В зависимости от контекста мы также можем рассматривать цикл L как подграф в Γ
и применять обозначение L = (VL, EL).

Пусть ℒ = ℒ(X) обозначает множество указанных циклов в Γ. Для каждого цикла L определим разбиение
(L+, L−) множества его ребер, где L+ образовано ребрами, идущими от W к F, а L− – ребрами, идущими от F к W
(называемыми, соответственно, W-активными и F-активными ребрами). Циклы L ∈ ℒ мы и называем ротаци-
ями, ассоциированными с матчингом X. Ключевые свойства ротаций приводятся в следующих двух утвержде-
ниях.

Предложение 3.1. Для каждого L ∈ ℒ(X) матчинг X′ := (X − L−) ∪ L+ является стабильным и удовлетворяет
X′ ≻ X.

Скажем, что такой матчинг X′ получен из X применением ротации L, и обозначим через 𝒮X множество таких
матчингов по всем L ∈ ℒ(X).

Предложение 3.2. Пусть Y ∈ 𝒮 и X ≺ Y. Тогда существует X′ ∈ 𝒮X, удовлетворяющий X′ ⪯ Y.

Доказательства этих предложений существенно используют следующую лемму. Для упрощения обозначе-
ний здесь и далее для множества ребер Z и элементов a /∈ Z и b ∈ Z мы можем писать Z + a вместо Z ∪ {a} и Z − b
вместо Z − {b}.

Лемма 3.1. Пусть (a(1), b(1)), . . . , (a(k), b(k)) – различные (непересекающиеся по ребрам) связки в Γ, проходящие
через вешину f ∈ F. Тогда для любого множества I ⊆ {1, . . . , k} =: [k] справедливо

C f (X f + a(1) + · · · + a(k) − {b(i) : i ∈ I}) = X f + a(1) + · · · + a(k) − b(1) − · · · − b(k).

Доказательство. Обозначим X f + a(1) + · · · + a(k) − {b(i) : i ∈ I} через ZI . Надо показать, что C f (ZI) = Z[k] для
любого I ⊆ [k].

Сперва установим это для I = ∅. Для этого сравним действие C f на Z∅ = X f + a(1)+ · · ·+ a(k) и на Yi := X f + a(i)
при произвольном i ∈ [k]. Из определения связки (a(i), b(i)) следует C f (Yi) = X f + a(i) − b(i). Применяя аксиому
(A2) к паре Z∅ ⊃ Yi, имеем

C f (Z∅) ∩ Yi ⊆ C(Yi) = X f + a(i) − b(i).
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Поскольку Yi содержит bi, получаем bi /∈ C f (Z∅).
Таким образом, C f (Z∅) ⊆ Z∅−b(1)−· · ·−b(k) = Z[k]. В этом выражении включение выполняется как равенство,

что следует из кардинальной монотонности, примененной к паре Z∅ ⊇ X f , в силу которой

|C(Z∅)| ≥ |C(X f )| = |X f | = |Z[k]|.

Теперь покажем требуемое равенство для произвольного I ̸= ∅, предполагая это выполненным по индукции
для всякого I′ ⊂ I. Возьмем i ∈ I, положим I′ := I− i и рассмотрим пару ZI′ ⊃ ZI . По индукции имеем C(ZI′ ) = Z[k].
Тогда в силу кардинальной монотонности получим

|C f (ZI)| ≤ |C f (ZI′ )| = |Z[k]| = |X f |.

С другой стороны, применяя (A2), имеем C f (ZI′ )∩ZI ⊆ C f (ZI). Отсюда следует, что C f (ZI) содержит Z[k] (ввиду
очевидного ZI ⊇ Z[k]). Тогда C f (ZI) = Z[k].

Лемма 3.1 доказана.

Из этой леммы следует, что

множество Z := X f + a(1) + · · · + a(k) − b(1) − · · · − b(k) – приемлемое для f и удовле-
творяет Z ≻ f X f . (3.4)

(Поскольку, применяя лемму 3.1 к I = ∅, имеем C f (Z ∪ X f ) = C f (X f + a(1) + · · · + a(k)) = Z.)

Доказательство предложения 3.1. Прежде всего заметим, что множество X′v приемлемое для всех v ∈ V. Это
следует из приемлемости Xv, если v /∈ VL. Для w ∈ W ∩ VL множество X′w состоит из одного ребра, и Cw(X′w) = X′w
очевидно. А для f ∈ F ∩ VL приемлемость X′f следует из (3.4) при L+ ∩ E f = {a1, . . . , ak} и L− ∩ E f = {b(1, . . . , b(k)}.
Таким образом, X′ ∈ 𝒜.

Теперь, рассуждая от противного, предположим, что X′ не стабильное и рассмотрим блокирующее ребро
e = w f для X′, т.е. e интересное для w при X′w и интересное для f при X′f . Заметим, что e /∈ X. (Иначе из e ∈ X
и e /∈ X′ следовало бы e ∈ L− ∩ E f =: B f , и, применяя лемму 3.1 к A f := L+ ∩ E f и B′ := B f − e, мы имели бы
C f (X′f + e) = C f ((X f − B′) ∪ A f ) = X′f , вопреки тому, что e интересное для f при X′f .)

Предположим, что указанное ребро e не интересное для f при X. Тогда C f (X f + e) = X f , откуда (применяя
плоттовость (2.1)) получаем

C f (X′f ∪ X f + e) = C f (X′f ∪C f (X f + e)) = C f (X′f ∪ X f ) = X′f .

С другой стороны, полагая Z′ := C f (X′f + e), имеем

C f (X′f ∪ X f + e) = C f (C f (X′f ∪ X f ) + e) = C f (X′f + e) = Z′.

Следовательно, Z′ = X′f . Но согласно (2.2)(ii), из интересности e относительно X′f должно следовать Z′ ≻ f X′f ;
противоречие.

Таким образом, e интересное для f при X.
Теперь, чтобы прийти к финальному противоречию, сравним e с активным ребром aw и ребром e′ ∈ X, инци-

дентным w; тогда {aw} = X′w и {e′} = Xw. Так как e интересное для w при X′, то выполняется e >w aw. В то же время,
так как ребро e интересное для f при X, то e не может быть интересным для w при X (ввиду стабильности X);
поэтому e′ >w e. Таким образом, e удовлетворяет свойству (3.1) и при этом является более предпочтительным,
чем W-активное ребро aw; противоречие.

Итак, X′ не допускает блокирующих ребер, т.е. является стабильным. Свойство X′ ≻F X следует из xw >w aw,
w ∈ WL (ввиду (2.3)(б)).

Предложение 3.1 доказано.

Доказательство предложения 3.2. Чтобы построить ротацию L ∈ ℒ(X), определяющую требуемый матчинг
X′, прежде всего заметим, что согласно (2.3)(в), размеры ограничений X и Y одинаковы для каждой вершины
v ∈ V, т.е. |Xv| = |Yv|. Поскольку X ̸= Y, найдется вершина w ∈ W, для которой Xw ̸= Yw. Тогда Xw состоит из
одного ребра xw, и Yw состоит из одного ребра yw, и выполняется xw >w yw (так как X ≺ Y влечет X ≻W Y, ввиду
полярности (2.3)(б)).

Ребро yw = w f должно быть интересным для вершины f при X. Действительно, ввиду Y f ⪰ f X f , имеем
C(Y f ∪ X f ) = Y f , где C := C f . Тогда, используя плоттовость, имеем

Y f = C(Y f ∪ X f ) = C((Y f − yw) ∪ (X f + yw)) = C((Y f − yw) ∪C(X f + yw)).
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Из yw /∈ (Y f − yw) следует yw ∈ C(X f + yw), поэтому yw интересное для f при X.
Следовательно, имеется активное ребро aw = wg, для которого xw >w aw ≥w yw. Рассмотрим вершину g и

множества Xg и Yg. Ребро aw является интересным для g при X, но не при Y (иначе мы имели бы aw ̸= yw и
aw >w yw, и тогда ребро aw было бы интересным при Y для обеих вершин w и g, вопреки стабильности Y). Итак,
Cg(Yg + aw) = Yg.

Факт. Cg(Xg + aw) = Xg + aw − b для некоторого b ∈ Xg; при этом b не принадлежит Y, и для Z := Xg + aw − b
выполняется Xg ≺g Z ⪯g Yg.

Доказательство. Ввиду интересности aw относительно Xg, возможны два случая (ср. (2.2)(i)): (a) C(Xg + aw) =
= Xg + aw, или (б) C(Xg + aw) = Xg + aw − b для некоторого b ∈ Xg, где C := Cg. В случае (a), если aw ∈ Y, имеем

|C(Xg + aw)| = |Xg| + 1 > |Yg| = |C(Yg ∪ Xg)|,

и в то же время Xg + aw ⊆ Yg ∪ Xg, что противоречит кардинальной монотонности. Если же aw /∈ Y, то

C(Yg ∪ Xg + aw) = C(C(Yg ∪ Xg) + aw) = C(Yg + aw),

а также |C(Yg + aw)| ≥ |C(Xg + aw)| = |Xg| + 1 (используя кардинальную монотонность для вложения
Yg ∪ Xg + aw ⊃ Xg + aw). Тогда C(Yg + aw) ̸= Yg, и, следовательно, ребро aw является блокирующим для Y (учи-
тывая aw ̸= yw); противоречие.

Таким образом, имеет место случай (б). Предположим теперь, что b ∈ Y. Тогда C(Yg ∪ Xg + aw) = C(Yg + aw), и
в то же время

C(Yg ∪ Xg + aw) = C((Yg − b) ∪ Xg + aw) = C((Yg − b) ∪C(Xg + aw)) = C((Yg − b) ∪ (Xg + aw − b)).

Поскольку оба операнда в последнем объединении не содержат b, получаем b /∈ C(Yg +aw). Но тогда C(Yg +aw) ⊆
⊆ Yg + aw − b ̸= Yg, что дает противоречие как в случае aw ∈ Y, так и в случае aw /∈ Y (где можно видеть, что
aw блокирует Y). Таким образом, b /∈ Y. Указанные сравнения для Xg, Z = Xg + aw − b и Yg легко следуют. Факт
доказан.

Пусть b = w′g. Из факта следует, что ребро b ассоциировано (образует связку) с aw, и что вершина w′ ин-
цидентна ребру yw′ ∈ Y, отличному от b = xw′ ∈ X. Тогда выполняется xw′ >w′ yw′ (ввиду X ≻W Y), и мы можем
применить к паре (xw′ , yw′ ) те же самые рассуждения, что применялись ранее к паре (xw, yw).

Продолжая данный процесс и далее, мы получаем “неограниченный” путь из чередующихся W-активных
и F-активных ребер для X. В нем каждая пара соседних ребер, инцидентных вершине f в F, скажем, e, e′ ∈ E f ,
образует связку, для которой выполняется e /∈ X f ∋ e′, и множество Z := X f + e − e′ удовлетворяет Y f ⪰ f Z.
Выделяя в этом пути участок между двумя попаданиями в одну и ту же вершину в W, мы получаем цикл, явля-
ющийся ротацией L, определяющей искомый матчинг X′ := (X−L−)∪L+ (где L+ и L− – множества W-активных и
F-активных ребер в L, соответственно). Здесь все вершины в W∩VL различные, и из построения следует, что для
каждой такой вершины w выполняется xw >w x′w ≥w yw. (Что касается вершин в F ∩ VL, каждая такая вершина f
может быть пройдена циклом L несколько раз, что порождает непересекающиеся по ребрам связки; используя
лемму 3.1 и факт выше, можно видеть, что X f ≺ f X′f ⪯ f Y f .)

Предложение 3.2 доказано.

4. ПОСЕТ РОТАЦИЙ

В этом разд. устанавливаются важные дополнительные свойства ротаций, которые приводят к построению
посета ротаций.

Пусть 𝒯 – последовательность матчингов X0, X1, . . . , XN, где X0 стабильное, и каждое Xi получается из Xi−1
применением (или сдвигом вдоль) ротации Li ∈ ℒ(Xi−1), т.е. Xi = (Xi−1 − L−i ) ∪ L+i . Тогда, в силу предложения 3.1,
все матчинги Xi являются стабильными, и справедливо X0 ≺ X1 ≺ · · · ≺ XN (где≺=≺F). Такую последовательность
𝒯 мы называем трассой, идущей из X0 в XN . Множество ротаций {L1, . . . , LN} обозначим ℛ(𝒯 ). Можно видеть,
что

(i) число матчингов в любой трассе 𝒯 не превышает |E|;

(ii) для каждого стабильного матчинга X найдется трасса, идущая из минимального
матчинга Xmin (наихудшего для F и наилучшего для W) в максимальный матчинг
Xmax и проходщая через X.

(4.1)
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Действительно, если Xi получается применением ротации к Xi−1, то для каждой вершины w ∈ W, где (Xi)w

отличается от (Xi−1)w, инцидентное матчинговое ребро становится менее предпочтительным. Это дает (i) (и даже
оценку |𝒯 | ≤ |E|/2). В свою очередь (ii) легко следует из Предложения 3.2.

Также, применяя лемму 3.1, легко показать коммутируемость ротаций в активном графе Γ(X). Более точно:

для любого подмножестваℒ′ ⊂ ℒ(X) матчинг X′, получаемый из X удалением ребер
из ∪(L− : L ∈ ℒ′) и добавлением ребер из ∪(L+ : L ∈ ℒ′) является стабильным, и
каждое L′ ∈ ℒ(X) − ℒ является ротацией в Γ(X′); в частности, ротации в ℒ(X) могут
применяться в произвольном порядке.

(4.2)

Это позволяет получить следующее важное свойство инвариантности множества ротаций для трасс, соеди-
няюших фиксированные матчинги (впервые свойство такого рода было получено в [11] для классических ста-
бильных марьяжей и затем было показано рядом авторов для более общих моделей стабильности).

Лемма 4.1. Пусть X,Y ∈ 𝒮 и X ≺ Y. Тогда для всех трасс 𝒯 , идущих из X в Y, множество ротаций ℛ(𝒯 ) одно и
то же.

Доказательство. Обозначим через 𝒳 множество стабильных матчингов X′ таких, что X ⪯ X′ ⪯ Y. Мы знаем,
что множество трасс, идущих из X′ ∈ 𝒳 в Y непусто (в силу предложения 3.2). Скажем, что матчинг X′ ∈ 𝒳
является особым, если найдутся две трассы 𝒯 ,𝒯 ′ из X′ в Y такие, что ℛ(𝒯 ) ̸= ℛ(𝒯 ′). Надо показать, что матчинг
X неособый (при фиксированном Y).

Предположим, что это не так, и рассмотрим особый матчинг X′ ∈ 𝒳максимальный в том смысле, что любой
матчинг Z ∈ 𝒳 такой, что X′ ≺ Z ⪯ Y, уже не является особым. В любой трассе из X′ в Y первый после X′ матчинг
Z получается из X′ применением некоторой ротации из ℒ(X′). Поэтому из выбора X′ следует, что найдутся две
ротации L, L′ ∈ ℒ(X′) такие, что матчинги Z и Z′, полученные из X′ применением L и L′ (соответственно) явля-
ются неособыми, но имеются трасса 𝒯 из X′ в Y, проходящая через Z, и трасса 𝒯 ′ из X′ в Y, проходящая через
Z′, для которых ℛ(𝒯 ) ̸= ℛ(𝒯 ′).

В то же время, поскольку ротации L и L′ коммутируют (ср. (4.2)), L является ротацией для Z′, а L′ – ротацией
для Z. Поэтому есть две трассы ̃︀𝒯 и ̃︀𝒯 ′ из X′ в Y такие, что ̃︀𝒯 начинается с X′,Z,Z′′, а ̃︀𝒯 ′ начинается с X′,Z′,Z′′,
а затем эти трассы совпадают; здесь Z′′ получается из Z применением L′ или, эквивалентно, получается из Z′

применением L. Тогдаℛ(̃︀𝒯 ) = ℛ(̃︀𝒯 ′). В силу неособости Z и Z′ должно выполнятьсяℛ(̃︀𝒯 ) = ℛ(𝒯 ) иℛ(̃︀𝒯 ′) = ℛ(𝒯 ′).
Но тогда получаем ℛ(𝒯 ) = ℛ(𝒯 ′); противоречие.

Лемма 4.1 доказана.

Назовем трассу, идущую из Xmin в Xmax полной. Согласно лемме 4.1, для всех полных трасс 𝒯 множество ро-
таций ℛ(𝒯 ) одно и то же; будем обозначать его через ℛ (таким образом, ℛ состоит из всех возможных ротаций,
применимых к матчингам в 𝒮). Известный метод сравнения ротаций, первоначально указанный в [11], подхо-
дит и для нашей модели КБМ и позволяет задать на ℛ структуру посета.

Определение 3. Для ротаций R,R′ ∈ ℛ скажем, что R предшествует R′ и обозначим это как R ⋖ R′, если в
каждой полной трассе ротация R применяется раньше, чем ротация R′.

Это бинарное отношение является транзитивным и антисимметричным и задает частичный порядок на ℛ;
мы называем (ℛ,⋖) посетом ротаций для G. Тесная связь этого посета со стабильными матчингами позволя-
ет получить “компактное описание” решетки (𝒮,≺) (в духе работы Биркхофа [10], где произвольная конечная
дистрибутивная решетка представляется в виде решетки идеалов посета).

Более точно, для каждого X ∈ 𝒮 возьмем трассу 𝒯 из Xmin в X и обозначим множество ротаций ℛ(𝒯 ) через
ω(X). Это множество не зависит от выбранной трассы, и для R,R′ ∈ ℛ из R ⋖ R′ и R′ ∈ ω(X) следует R ∈ ω(X), т.е.
ω(X) является идеалом посета (ℛ,⋖). Верно и обратное, и более того, отображение ω дает изоморфизм решеток.

Предложение 4.1. Соответствие X ↦→ ω(X) устанавливает изоморфизм между решеткой стабильных матчин-
гов (𝒮,≺F) и решеткой (ℐ,⊂) идеалов посета (ℛ,⋖) (где точные нижняя и верхняя грани для I, I′ ∈ ℐ – это I ∩ I′ и
I ∪ I′, соответственно).

Доказательство. Рассмотрим стабильные матчинги X,Y ∈ 𝒮 и возьмем их структурное пересечение (“meet”)
M := X ⋏ Y и структурное объединение (“join”) J := X ⋎ Y в решетке (𝒮,≺). Основная часть доказательства
состоит в том, чтобы установить соотношения

ω(X) ∩ ω(Y) = ω(M) и ω(X) ∪ ω(Y) = ω(J); (4.3)

иными словами, нужно показать, что ω определяет гомоморфизм рассматриваемых решеток.
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Покажем левое равенство в (4.3). Для этого применим метод доказательства предложения 3.2, рассматривая
пару M ≺ X и пару M ≺ Y. Пусть W1 (W2) – множество вершин w ∈ W, где Mw ̸= Xw (соответственно, Mw ̸= Yw).
Мы утверждаем, что W1 ∩W2 = ∅.

Чтобы это показать, следуя доказательству предложения 3.2, выберем произвольную начальную вершину
w ∈ W1, для которой выполняется mw >w xw (где {mw} = Mw и {xw} = Xw), и построим соответвующий чередую-
щийся путь P в графе допустимости D(M) с началом w до первого зацикливания, получая ротацию L ∈ ℒ(M).
Тогда для M′ := (M − L−)∪ L+ выполняется M ≺ M′ ⪯ X. Заметим, что путь P и ротация L строятся канонически,
они определяются только графом D(M) и начальной вершиной w (и в остальном не зависят от X).

В случае W1 ∩ W2 ̸= ∅, взяв общую вершину w ∈ W1 ∩ W2, мы получили бы одну и ту же ротацию для обеих
пар (M, X) и (M,Y). Но тогда для X и Y мы имели бы нижнюю грань большую, чем M (а именно, M′ как выше);
противоречие.

Следовательно, W1 ∩ W2 = ∅. Продолжая построение по указанному методу для пары (M, X), мы получим
трассу 𝒯 из M в X такую, что для каждого промежуточного матчинга ̃︀M множество вершин w ∈ W, где ̃︀Mw ̸=

Xw, является подмножеством в W1. И аналогично для трассы 𝒯 ′ из M в Y и множества W2. Отсюда следует, что
ℛ(𝒯 )∩ℛ(𝒯 ′) = ∅. Посколькуω(X) = ω(M)∪ℛ(𝒯 ) иω(Y) = ω(M)∪ℛ(𝒯 ′), мы получаем требуемое левое равенство
в (4.3).

Доказательство правого равенства в (4.3) симметричное (оно может проводиться путем перехода от ≺F к ≺W

и обращением ротационных преобразований).
Теперь требуемое утверждение легко следует из того факта, что для ротаций R,R′ ∈ ℛ отношение R ⋖ R′ не

выполняется тогда и только тогда, когда найдется стабильный матчинг X, для которого R′ ∈ ω(X) ̸∋ R. (Иными
словами, решетка (𝒮,≺) не может быть “более крупной”, чем решетка (ℐ,⊂).)

Предложение 4.1 доказано.

Как следствие, множество𝒮 биективно множеству𝒜 анти-цепей посета (ℛ,⋖). (Напомним, что анти-цепь в
посете (P, <) – это множетсво A попарно несравнимых элементов. Оно определяет идеал {p ∈ P : ∃ a ∈ A | p ≤ a},
и определяется идеалом, для которого A – множество максимальных элементов.)

5. ПОСТРОЕНИЯ

Как указывалось выше (ср. (4.1)(i)), число ротаций |ℛ| не превосходит числа ребер |E| рассматриваемого гра-
фа; поэтому посет ротаций (как граф) имеет размер O(|E|2). (Помимо этого, можно видеть, что ротации попар-
но не пересекаются по ребрам одного знака; следовательно, суммарное число ребер в ротациях не выше 2|E|.)
В свете леммы 4.1, нахождение множестваℛ не представляет большого труда, если известен начальный (наиме-
нее выгодный для F) стабильный матчинг Xmin; а именно, достаточно построить произвольную полную трассу,
идущую из Xmin (детали такого построения будут уточнены позднее). Менее тривиальной выглядит задача на-
хождения отношения предшествования ⋖ на ротациях, которое было определено неявно, путем рассмотрения
всего множества полных трасс. Мы начнем этот раздел с изложения эффективного метода определения этого
отношения и затем рассмотрим вопросы эффективного построения других упомянутых структур.

5.1. Построение порождающего графа для (ℛ,⋖)

Ротация R ∈ ℛ называется непосредственно предшествующей ротации R′ ∈ ℛ, если R⋖R′ и нет такого R′′ ∈ ℛ,
что R⋖R′′⋖R′. Обозначим через H = (ℛ,ℰ) ориентировавнный граф, в котором множество ребер ℰ образовано
всеми парами (R,R′), где R непосредственно предшествует R′; иными словами, H – это диаграмма Хассе посета
(ℛ,⋖). Граф H определяет данный посет (через достижимость ориентированными путями) и может заменять
посет при работе с приложениями.

Эффективное построение графа H опирается на следующий простой факт.

Лемма 5.1. Для R ∈ ℛ обозначим Imax
−R максимальный идеал в (ℛ,⋖), не содержащий R. Положим I′ := Imax

−R ∪

{R}. Ротация R непосредственно предшествует ротации R′ тогда и только тогда, когда R′ является минимальным
элементом, не содержащимся в I′.

Доказательство. Заметим, что Imax
−R является дополнением до ℛ множества (“фильтра”) ΦR, образованного

ротациями ̃︀R большими или равными R (т.е. R ⋖ ̃︀R или R = ̃︀R). Ясно, что минимальные элементы в ΦR − {R} –
это в точности те элементы R′, для которых R является непосредственно предшествующим. Эти R′ составляют
множество минимальных элементов вне идеала I′. Лемма доказана.

Для R ∈ ℛ обозначим через ℐ+R множество ротаций, непосредственно следующих за R. Основываясь на пред-
ложении 4.1 и лемме 5.1, мы можем эффективно строить множество ℐ+R следующим образом (при условии, что
известен матчинг Xmin).
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Построениеℐ+R. Начиная с Xmin, последовательно выстраиваем трассу𝒯 , используя все возможные ротации,
кроме R. А именно, на очередном шаге для текущего матчинга X находим множество ротаций ℒ(X), ассоции-
рованных с X (см. раздел 3.2), выбираем произвольную ротацию L ∈ ℒ(X), отличную от R, и сдвигаем X вдоль
L, получая новый текущий матчинг X′. В случае ℒ(X) = {R} первая фаза процедуры заканчивается.

Вторая фаза процедуры состоит в сдвиге полученного X вдоль R. Множество ℒ(X′) ротаций, ассоциирован-
ных с полученным при сдвиге матчинге X′, выдается как искомое множество ℐ+R.

(Нетрудно видеть, что при завершении первой фазы текущий матчинг X соответствует идеалу I = Imax
−R , т.е.

ω(X) = I. Факт совпадения ℐ+R с ℒ(X′) также очевиден.)
“Незамысловатый” алгоритм, использующий эту процедуру, состоит из |ℛ| больших итераций, каждая из ко-

торых рассматривает очередную ротацию R в списке всех ротаций. (Заметим, что нет нужды строить этот спи-
сок заранее, он может формироваться по ходу выполнения больших итераций. Список начинается с множества
ℒ(Xmin).) На каждой большой итерации многократно решается следующая базовая задача:

(P): для заданного X ∈ 𝒮 построить активный граф Γ(X) и выделить в нем множество ротаций ℒ(X).

Для построения Γ(X) просматриваются вершины w ∈ W, и для каждого w сканируются ребра w f ∈ Ew в по-
рядке убывания предпочтения >w, начиная с ребра, следующего за xw. Для каждого ребра e = w f определяется,
является ли оно интересным для f при X (путем вычисления C f (X f + e) и сравнения с X f ), и первое интересное
ребро (если таковое найдется) объявляется W-активным ребром aw. Попутно определяются F-активные ребра
и строятся связки. Это дает допустимый граф D(X). Процедуры очистки графа D(X) и разложения очищенного
активного графа Γ(X) на ротации рутинные, и могут выполняться за линейное время O(|E|). Как следствие,

решение задачи (P) сводится к выполнению O(|E|) стандартных операций плюс
O(|E|) обращениям к “оракулам” C f ( f ∈ F).

(5.1)

(Здесь и далее мы предполагаем, что функции выбора C f задаются неявно при помощи “оракула”, который
для опрашиваемого аргумента Z ⊆ E f сообщает значение C f (Z); считается, что такая операция занимает O(1)
оракульного времени.)

Бесхитростное построение множества ℐ+R для фиксированного R сводится к независимому решению O(|E|)
задач (P) (где каждая задача касается элемента строящейся трассы 𝒯 ), поэтому временные показатели, указан-
ные в (5.1), следует умножить на O(|E|). Однако этот процесс можно ускорить. Для этого в каждой вершине
w ∈ W следует запоминать последнее просканированное ребро e = w f на предыдущих шагах. Если это ребро
было активным и участвовало в примененной ротации, то дальнейшее сканирование в Ew следует начинать с
ребра, следующего по порядку за e. Если же оно не использовалось при ротации, то оно остается активным на
текущем шаге. Это обосновывается при помощи леммы 3.1, из которой следует, что если ротация L входила в
ℒ(X) для X на некотором шаге, но не была применена, то она остается действующей ротацией на последующих
шагах, пока не будет применена.

Это дает улучшенную процедуру построения ℐ+R, при которой каждое ребро в Ew сканируется не более од-
ного раза, и поэтому вся процедура для одного R ∈ ℛ выполнима за стандартное время O(|E|) и аналогичное
оракульное время. Отсюда при переборе по ℛ получаем

Предложение 5.1. При наличии матчинга Xmin нахождение минимального порождающего графа (диаграммы Хас-
се) H = (ℛ,ℰ) для посета ротаций (ℛ,⋖) осуществимо за время O(|E|2) (включая оракульное время).

5.2. Построение начального матчинга Xmin

Чтобы сконструировать Xmin, можно воспользоваться методом в [17, Sec. 3.1], приспособленным для более
широкого класса моделей стабильности на двудольных графах. Ниже мы даем его описание применительно к
нашей модели КБМ. Альтернативный метод, основанный на классической технике “отложенных принятий”
(deferred acceptance), излагается в [14, Sec. 4.1].

На итерациях алгоритма построения Xmin последовательно конструируются тройки множеств (Bi, Xi,Y i),
i = 0, 1, . . . , i, . . .. В начале полагается B0 := E. На входе очередной i-й итерации имеется множество Bi ⊆ E (уже
известное), которое преобразуется на двух стадиях итерации.

На 1-й стадии итерации Bi преобразуется в Xi ⊆ E применением оператора Cw к каждому ограничению
Bi

w = Bi
Ew

(w ∈ W), т.е. Xi – это матчинг, для которого Xi
w = Cw(Bi

w). Иными словами, в нашей модели с линей-

ными предпочтениями и единичными квотами в W для каждой вершины w ∈ W в множестве Bi
w выбирается

наиболее предпочтительное (относительно >w) ребро e, и полагается Xi
w := {e}. В случае Bi

w = ∅, полагается
Xi

w := ∅ (и вершина w будет дефицитной). Таким образом, Xi удовлетворяет квотам во всех вершинах доли W.
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На 2-й стадии итерации полученный матчинг Xi трансформируется в Y i ⊆ E применением оператора C f к
каждому ограничению Xi

f = Xi
E f

( f ∈ F), т.е. Y i – это матчинг, для которого Y i
f = C f (Xi

f ). (Следовательно, Y i

приемлемое для всех вершин; однако оно не обязано быть стабильным.)
Полученные множества Xi,Y i затем используются при генерации множества Bi+1 для следующей итерации.

А именно:

Bi+1 состоит из всех e ∈ E таких, что e ∈ Bi, и либо e ∈ Xi ∩Y i, либо e /∈ Xi ∪Y i (иначе
говоря, e ∈ Bi не попадает в Bi+1, если e принадлежит Xi и не принадлежит Y i).

(5.2)

Затем Bi+1 преобразуется в Xi+1 и Y i+1 как указано выше, и т.д. Процесс заканчивается, когда на текущей,
p-й, итерации получаем равенство Y p = Xp (эквивалентно, Bp+1 = Bp). Можно видеть, что B0 ⊃ B1 ⊃ · · · ⊃ Bp,
поэтому процесс конечен и число итераций не превосходит |E|.

Из доказанного в [17] следует

Предложение 5.2. Полученный матчинг Xp стабильный и оптимальный для W, т.е. Xp = Xmin.

Следует заметить, что для рассматриваемой в [17] общей модели, которая может иметь дело с вещественны-
ми функциями на E, процесс преобразования соответствующих функций (bi, xi, yi) может быть бесконечным,
но всегда сходится к некоторой тройке (̂︀b, ̂︀x,̂︀y), удовлетворяющей ̂︀x = ̂︀y. Доказывается (в Теоремах 1 и 2 в [17]),
что предельная функция ̂︀x стабильная и оптимальная для соответствующей доли вершин. В нашем частном
булевом случае мы получаем предложение 5.2.

На i-й итерации алгоритма множество Xi формируется из Bi за O(|W |) (“амортизационных”) действий, путем
взятия первых элементов в ограничениях Bi

w, w ∈ W. Множества Xi
f для всех f ∈ F можно также сформировать за

O(|W |) действий, и оператор C f применяется к каждому Xi
f не более одного раза (вычисляя Y i

f ). С учетом этого,
имплементацию алгоритма можно организовать так, чтобы получить следующие оценки сложности:

матчинг Xmin строится за время O(|E||V |) (включая оракульное время). (5.3)

Это вместе с предложением 5.1 дает следующий результат.

Теорема 5.1. Посет ротаций (ℛ,⋖) может быть построен за время O(|E|2) (включая оракульное время).

Замечание 2. Построение ротаций и их посета нетрудно перенести на КБМ с графом G = (V, E), содержащим
кратные ребра. Для этого используется редукция к графу G′ = (V ′, E′) без кратных ребер путем замены ребер e
подграфами Ke как указано в замечании 1 (в разд. 2); здесь множество U заменяемых ребер содержит по край-
ней мере одно ребро из каждой пары кратных ребер. Стабильные матчинги в G′ назовем родственными, если
они отличаются только на некоторых циклах Oe для e ∈ U (учитывая случай (*), отмеченный в замечании 1).
Тогда множество 𝒮 стабильных матчингов для G изоморфно множеству классов родственности в множестве
стабильных матчингов для G′. В соответствии с этим, множество ℛ′ ротаций для G′ делится на два подмноже-
ства ℛ′1 и ℛ′2, где каждая ротация в ℛ′2 соответствует циклу Oe для некоторого e ∈ U. Можно видеть, что если при
построении трассы в G′ применяется ротация, содержащая ребро из Ke для некоторого e ∈ U, то значения мат-
чинга стабилизируются на Ke, т.е. никакая из последующих ротаций уже не использует ребер из Ke. (Это следует
из структуры Ke и монотонности изменений на всех ребрах, а именно, если при ротации ребро перестает быть
матчинговым, то оно остается таковым в дальнейшем.)

Как следствие, каждая ротация в ℛ′2 является максимальным элементом посета (ℛ′,⋖′). В свою очередь,
ротации для G взаимно однозначно соответствуют элементам в ℛ′1 (являясь образами последних при замене
подграфов Ke ребрами e), и посет ротаций (ℛ,⋖) для G изоморфен ограничению посета (ℛ′,⋖′) на ℛ′1. Так как
|E′| < 8|E|, посет для G строится за время O(|E|2), ввиду теоремы 5.1.

6. АФФИННАЯ ПРЕДСТАВИМОСТЬ И СТАБИЛЬНЫЕ МАТЧИНГИ МИНИМАЛЬНОЙ СТОИМОСТИ

Биекция ω, представленная в предложении 4.1, позволяет показать аффинную представимость решетки
(𝒮,≺F), по аналогии с тем, как это делается в [14] для общей булевой задачи или в [20] для задачи о стабиль-
ных распределениях.

Напомним, что каждая ротация R ∈ ℛ возникает как цикл определенного активного графа Γ(X), и множе-
ство ее ребер имеет фиксированное разбиение, обозначаемое (R+,R−) и состоящее из W- и F-активных ребер,
соответственно. Мы ассоциируем с R характеристический вектор βR ∈ RE, принимающий значение 1 для e ∈ R+,
−1 для e ∈ R−, и 0 для остальных ребер.

Помимо пространства RE, мы также будем рассматривать пространство Rℛ с координатами, индексируемы-
ми ротациями; в этом случае мы будем обозначать единичный базисный вектор, соответствующий ротации R,
как ⟨R⟩.
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Для подмножества X ⊆ E его характеристический 0,1 вектор в RE будет обозначаться как χX = χX
E, и анало-

гично, для подмножества I ⊆ ℛ его характеристический 0,1 вектор в Rℛ будет обозначаться как χI = χI
ℛ.

Пусть A ∈ RE×ℛ – матрица, столбцы которой образованы векторами βR, R ∈ ℛ. Из предложения 4.1 следует,
что

отображение λ ∈ Rℛ
γ

↦−→ x ∈ RE, где x определяется как χXmin
+ Aλ, порождает биек-

цию между характеристическими векторами χI
ℛ идеалов I посета (ℛ,⋖) и характе-

ристическими векторами χX
E стабильных матчингов X ∈ 𝒮.

(6.1)

(Здесь γ соответствует естественному расширению отображения ω−1 из предложения 4.1.)
Согласно описаниям в разд. 5, матрица A может быть построена эффективно за время O(|E|2). Благодаря

этому, аффинная представимость для решетки (𝒮,≺F), выраженная в (6.1) (где порядок ≺F согласуется с вло-
жением ⊂ в решетке идеалов для (ℛ,⋖)), может применяться для сведения определенных задач о стабильных
матчингах к “более простым” задачам на идеалах посета ротаций.

Прежде всего отметим, что аффинное отображение γ в (6.1) переводит выпуклую оболочку conv(ℐ) ⊂ Rℛ
множества ℐ идеалов посета ротаций в выпуклую оболочку conv(𝒮) ⊂ RE множества стабильных матчингов 𝒮.
(Здесь мы для простоты изложения отождествляем идеалы посета и стабильные матчинги с их характеристиче-
скими векторами.) Многогранник conv(ℐ) полноразмерный (поскольку каждый единичный базисный вектор
⟨R⟩ (R ∈ ℛ) может быть выражен как разность характеристических векторов двух идеалов в ℐ). Он описывается
неравенствами

0 ≤ λ(R) ≤ 1, R ∈ ℛ; (6.2)

λ(R) ≥ λ(R′), R,R′ ∈ ℛ, R ⋖ R′. (6.3)

Эта линейная система соответствует описанию порядкового многогранника (order polytope)𝒫Q для конечного
посета Q в работе Стэнли [15]; в нашем случае Q = (ℛ,⋖) и 𝒫Q = conv(ℐ). Гиперграни (facets) в conv(ℐ) выража-
ются неравенствами трех видов:

(a) λ(R) ≤ 1 для минимальных R; (б) λ(R) ≥ 0 для максимальных R; и (в)
λ(R) ≥ λ(R′), где R непосредственно предшествует R′.

(6.4)

Что касается вершин, то

вершины в conv(ℐ) взаимно однозначно соответствуют идеалам в ℐ. (6.5)

(Действительно, каждый идеал I ∈ ℐ определяет вершину в conv(ℐ), поскольку χI – единственный вектор,
максимизирующий скалярное произведение aχI′ по всем идеалам I′ ∈ ℐ, где a принимает значение 1 на ротациях
R ∈ I, и значение −1 на ротациях R ∈ ℛ − I. Обратное очевидно.)

Важное свойство отображения γ в (6.1) следует из того, что

матрица A имеет полный столбцовый ранг. (6.6)

Этот факт был показан в [14, Th. 1.4] для общего булевого случая (где ФВ для всех вершин подчиняются
аксиомам (A1),(A2),(A3)). Доказательство этого для нашей модели КБМ довольно простое, и для полноты из-
ложения, мы его приводим.

Доказательство (6.6). Положим N := |ℛ| и перенумеруем ротации как R(1), . . . ,R(N), соблюдая правило: из
R(i) ⋖ R( j) следует i < j (упорядочение такого рода известно под названием “топологической сортировки” вер-
шин ациклического ориентированного графа). Для каждого i = 1, . . . ,N в R(i) выделим одно ребро в “отрица-
тельной” части R(i)−, которое обозначим как ei. Для полученных нумераций справедливо следующее:

(a) все ребра e1, . . . , eN различные; и (б) для любых 1 ≤ i < j ≤ N значение βR( j)

на ребре ei равно 0.
(6.7)

Эти свойства следуют из того, что для ротации R, строящейся в активном графе Γ(X) матчинга X, в каждой
вершине w ∈ W, принадлежащей R, матчинговое ребро e = w f ∈ X более предпочтительное, чем активное ребро
a = w f ′, т.е. e >w a. Мы имеем e ∈ R− и a ∈ R+, и при применении ротации R к X матчинговое ребро e меняется
на a (так сказать “сдвигается вправо”). Поэтому при построении любой трассы после использования ротации
R каждая последующая ротация не может содержать ребро e. Отсюда следуют оба свойства в (6.7). (Фактически
можно наблюдать следующее: любое ребро e принадлежит не более двум ротациям, и если e принадлежит R(k)
и R(i) при k < i, то эти ротации сравнимы, т.е. выполняется R(k) ⋖ R(i), и при этом e ∈ R(k)+ и e ∈ R(i)−.)
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Теперь переставим столбцы и строки матрицы A так, чтобы столбцы βR(i) шли по возрастанию индекса i
(слева-направо), и первые N строк соответствовали ребрам e1, . . . , eN, следующих по возрастанию их индексов
(сверху-вниз). Тогда из (6.7) следует, что подматрица, образованная первыми N строками, является нижне тре-
угольной с коэффициентами −1 на диагонали. Это дает (6.6).

Из (6.1) и (6.6) получаем

Следствие 6.1. dim(conv(𝒮)) = dim(conv(ℐ)) = |ℛ|, и многогранник conv(𝒮) аффинно конгруэнтен порядковому
многограннику conv(ℐ) посета (ℛ,⋖).

В частности, вершины conv(𝒮) образованы всеми стабильными матчингами в 𝒮 и взаимно однозначно со-
ответствуют идеалам в ℐ, многогранник conv(𝒮) имеет O(|ℛ|2) гиперграней, все они являются образами при γ
гиперграней в conv(ℐ) (указанными в (6.4)) и могут быть эффективно выписаны.

В завершении этого раздела мы рассматриваем задачу о стабильном матчинге минимальной стоимости:

для заданных стоимостей c(e) ∈ R ребер e ∈ E найти стабильный матчинг X ∈ 𝒮
минимальной общей стоимости c(X) :=

∑︀
e∈E c(e). (6.8)

Заметим, что поскольку все стабильные матчинги X имеют одинаковый размер |X|, функция c может зада-
ваться с точностью до константы; в частности, можно считать c положительной. Заменяя c на −c, мы получаем
эквивалентную задачу максимизации c(X) среди X ∈ 𝒮.

Эффективный метод, разработанный в [12] для решения задачи минимизации линейной функции на мно-
жестве стабильных марьяжей и впоследствии успешно примененный рядом авторов для некоторых других мо-
делей стабильности, состоит в сведении к задаче линейной минимизации на множестве идеалов соответству-
ющего посета ротаций (в предположении, что такой посет существует и может быть эффективно построен), и
затем последняя задача сводится методом Пикара [13] к классической задаче о минимальном разрезе ориенти-
рованного графа. Для полноты изложения мы далее описываем метод решения задачи (6.8) для нашего случая
(придерживаясь описания в работе [21]).

Вначале вычисляется стоимость cβR (= c(R+) − c(R−)) каждой ротации R ∈ ℛ. Тогда для каждого X ∈ 𝒮 и
соответствующего идеала I := ω(X) имеем

c(X) = c(Xmin) +
∑︁

(cβR : R ∈ I).

Это позволяет перейти к следующей задаче для ротаций R с весами (стоимостями) ζ(R) := cβR:

найти идеал I ∈ ℐ посета (ℛ,⋖), минимизирующий общий вес ζ(I) :=
∑︀

(ζ(R) : R ∈ I). (6.9)

Удобно слегка расширить постановку последней задачи, рассматривая произвольный конечный ориентиро-
ванный граф H = (VH , EH) и функцию весов ζ : VH → R. Требуется найти замкнутое множество вершин X ⊆ VH

минимального веса ζ(X); назовем это задачей (*). Здесь множество X называется замкнутым, если в H нет ребер,
идущих их VH − X в X. (Ясно, что в соответствующем графе посета замкнутые множества – это идеалы.)

Следуя [13], задача (*) сводится к задаче о минимильном разрезе ориентированного графа ̂︀H = (̂︀V , ̂︀E) с функ-
цией пропускных способностей ребер h, которые получаются из H, ζ при:

(a) добавлении двух вершин: “источника” s и “стока” t;
(б) добавлении множества E+ ребер (s, v) для всех вершин v, принадлежащих V+ := {v ∈ VH : ζ(v) > 0};
(в) добавлении множества E− ребер (u, t) для всех вершин u, принадлежащих V− := {u ∈ VH : ζ(u) < 0};
(г) назначении пропускных способностей h(s, v) := ζ(v) для v ∈ V+, h(u, t) := |ζ(u)| для u ∈ V−, и h(e) := ∞ для

всех e ∈ EH.
Напомним, что под s–t разрезом в ̂︀H понимается множество направленных ребер δ(A), идущих из подмно-

жества вершин A ⊂ ̂︀V такого, что s ∈ A ̸∋ t, в его дополнение ̂︀V − A, и пропускной способностью этого разреза
считается величина h(δ(A)) :=

∑︀
(h(e) : e ∈ δ(A)). Можно видеть, что δ(A) имеет минимальную пропускную спо-

собность среди всех s–t разрезов тогда и только тогда, когда X := VH − A – замкнутое множество минимального
веса ζ(X) в H.

Действительно, для s–t разреза δ(A) величина h(δ(A)) является конечной тогда и только тогда, когда δ(A)
не содержит ребер из H (учитывая бесконечную пропускную способность последних). Отсюда следует, что
δ(A) ⊆ E+ ∪ E−, и что множество X замкнутое. Тогда

h(δ(A)) = h(δ(A) ∩ E+) + h(δ(A) ∩ E−) = ζ(X ∩ V+) +
∑︁

(|ζ(u)| : u ∈ (VH − X) ∩ V−) =

= ζ(X ∩ V+) + ζ(X ∩ V−) − ζ(V−) = ζ(X) − ζ(V−).
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Таким образом, ζ(X) отличается от h(δ(A)) на константу ζ(V−), откуда следует требуемое свойство, и мы при-
ходим к желаемому результату.

Теорема 6.1. Задача о стабильном матчинге минимальной стоимости (6.8) для рассматриваемой модели КБМ
разрешима в сильно полиномиальное время (оценивающее число стандартных и оракульных операций).

7. ПРОИЗВОЛЬНЫЕ КВОТЫ НА W

Выше мы описывали конструкции и доказывали утверждения в предположении, что в рассматриваемой
комбинированной модели стабильности (КБМ) квоты всех вершин в доле W равны 1. Все это достаточно просто
обобщается на случай произвольных квот q(w) ∈ Z+, w ∈ W, и ниже мы даем краткое изложение уточнений и
изменений, оставляя аккуратную проверку деталей читателю как упражнение.

1) Прежде всего уточним конструкцию активного графа для стабильного матчинга X ⊆ E (разд. 3.1). Ранее
для полновесной вершины w ∈ W= мы обозначали xw единственное ребро в Xw = X ∩ Ew. Теперь, рассматривая
полновесную вершину w ∈ W (т.е. удовлетворяющую |Xw| = q(w)), мы обозначаем xw последнее (наименее пред-
почтительное) ребро в Xw. Определения W-допустимого ребра aw в Ew и связки (aw, bw

f ) остаются прежними (как
в (3.1) и (3.2)). Заметим, что, как и прежде, каждая вершина в W имеет не более одного W-допустимого ребра.

2) Как и прежде, в графе D = D(X), определяемом направленными W- и F-допустимыми ребрами, для
вершин f ∈ F число входящих W-допустимых ребер (вида aw = (w, f )) больше или равно числу выходящих
F-допустимых ребер (вида b = ( f ,w′)). (Здесь первое число превосходит второе, когда для входящего ребра
aw = (w, f ) выполняется C f (X f + aw) = X f + aw (и следовательно, aw не порождает связку), или когда имеются две
или более связки (a, b), (a′, b′) с b = b′.) В то же время, для вершин w ∈ W имеется одно выходящее W-допустимое
ребро aw, а число σw входящих F-допустимых ребер ( f ,w) может быть равно 0, 1 или более (последнее может воз-
никнуть при q(w) > 1).

3) Процедура очистки остается дословно той же самой, она преобразует D в активный граф Γ = Γ(X). За-
метим, что для вершин w в WΓ := W ∩ VΓ процедура будет обеспечивать выполнение |δin(w)| ≥ |δout(w)| = 1 (где
δin(w) и δout(w) обозначают множества входящих и выходящих ребер в Γ, инцидентных w); в случае σw > 1 здесь
априори допустимо строгое неравенство. Тем не менее, этого не происходит, и свойство (3.3) сохраняется в си-
лу простых балансовых соотношений (ввиду того, что, как и прежде, |δin(v)| ≥ |δout(v)| для всех v ∈ VΓ). Таким
образом, как и прежде, Γ распадается на непересекающиеся по ребрам циклы-ротации, каждая вершина в WΓ
принадлежит ровно одной ротации, и любая ротация L проходит через каждую вершину в WL ровно один раз,
но может многократно проходить через одну и ту же вершину в FL.

4) Лемма 3.1 остается справедливой, и ее доказательство не изменяется. В доказательстве предложения 3.1
множество X′w теперь не обязано состоять из одного ребра, а в соответствии с общим правилом определяется
как X′w := Xw − e+ aw, где {e} = L− ∩ Ew. Это не влияет на доказательство, с точностью до мелких поправок. В до-
казательстве предложения 3.2 в случае Xw ̸= Yw, вместо {xw} = Xw и {yw} = Yw, ребра xw и yw должны выбираться
в Xw − Yw и Yw − Xw, соответственно, так, чтобы выполнялось xw >w yw (что можно сделать, ввиду Xw ≻w Yw).
Структура доказательства и основные детали сохраняются.

5) В доказательстве предложения 4.1, вместо {mw} = Mw и {xw} = Xw, следует выбрать mw ∈ Mw − Xw и xw ∈

∈ Xw − Mw таким образом, чтобы выполнялось mw >w xw. В остальном изложение разд. 4 принципиально не
изменяется.

6) Можно убедиться, что построения и результаты, изложенные в разд. 5 и 6, верны и для общего случая
квот в W. В частности, остается верной теорема 5.1, утверждающая, что посет ротаций (ℛ,⋖) строится за время
O(|E|2).

8. МОДЕЛЬ СТАБИЛЬНОСТИ С ПОСЛЕДОВАТЕЛЬНЫМ ВЫБОРОМ

Как упоминалось во Введении, рассматриваемая нами модель стабильности (КБМ) появляется при редук-
ции более общей модели стабильных матчингов в двудольном графе. В последней предпочтения агентов одной
доли (“фирм”) задаются с помощью плоттовских и кардинально монотонных ФВ, а предпочтения агентов дру-
гой доли (“работников”) задаются т.н. последовательными (sequential) ФВ; для определенности мы далее будем
именовать эту модель последовательной, или П-моделью. В работе [16] было установлено, что имеет место ре-
дукция П-модели к КБМ, при которой множества стабильных матчингов оказываются изоморфными. Ниже,
следуя [16], мы даем описание П-модели и ее редукции к КБМ и формулируем утверждения об изоморфизмах

ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И МАТЕМАТИЧЕСКОЙ ФИЗИКИ том 65 № 1 2025



СТАБИЛЬНЫЕ МАТЧИНГИ, ФУНКЦИИ ВЫБОРА И ЛИНЕЙНЫЕ ПОРЯДКИ 135

соответствующих матчингов и их решеток. Затем мы обсуждаем, какие следствия для П-модели можно полу-
чить из результатов о ротациях и их приложениях, полученных для КБМ.

Следует заметить, что в [16] рассматривается более широкий класс моделей с последовательными ФВ, од-
нако нас сейчас интересует только та их них, что непосредственно связана с редукцией к КБМ. Для простоты
изложения мы будем предполагать, что рассматриваемые графы не содержат кратных ребер (допущение крат-
ных ребер будет сделано в замечании в конце раздела).

Как и прежде, рассматривается двудольный граф G = (V, E) с вершинными долями W (“работники”) и F
(“фирмы”), и для каждой вершины f ∈ F задана плоттовская и кардинально монотонная ФВ C f : 2E f → 2E f .
В то же время для каждой вершины w ∈ W задана последовательность линейных ФВ C1

w, . . . ,C
q(w)
w на Ew; это

означает, что каждая ФВ Ci
w связана с линейным порядком >i

w на Ew и выбирает в каждом подмножестве Z ⊆ Ew

максимальный элемент относительно >i
w. Можно считать, что q(w) ≤ |Ew|.

Определение 4. Обозначим C1
w * · · · * Cq(w)

w функцию выбора Cw, которая для любого Z ⊆ Ew определяет его
подмножество Cw(Z), состоящее из элементов z1, . . . , zk, где k = min{|Z|, q(w)}, которые выбираются по следующе-
му рекурсивному правилу: zi – это максимальный элемент относительно >i

w в множестве Z − {z1, . . . , zi−1}. Такую
функцию Cw назовем последовательной ФВ ранга q(w), порождаемую линейными порядками >1

w, . . . , >
q(w)
w (или

линейными ФВ C1
w, . . . ,C

q(w)
w ).

Показывается, что ФВ Cw является плоттовской и квотируемой с квотой q(w). Совокупность {Cv, v ∈ V} ука-
занных ФВ и определяет то, что мы выше назвали П-моделью. Эта модель представляет собой частный случай
СБМ (специальной булевской модели, упомянутой во Введении), и в то же время она обобщает КБМ. (Заме-
тим также, что, как указано в [16], ранее было показано, что не всякая квотируемая плоттовская ФВ является
последовательной ФВ.)

Приступим к описанию редукции данной П-модели, определяемой вышеуказанными ФВ Cv, v ∈ V. Граф G
преобразуется путем репликации вершин доли W. А именно,

каждая вершина w ∈ W заменяется q(w) вершинами w1, . . . ,wq(w), и, соответственно,
каждое ребро w f ∈ E порождает q(w) ребер wi f , i = 1, . . . , q(w).

(8.1)

Полученный граф обозначим ̃︀G = (̃︀V , ̃︀E) и обозначим через π естественное отображение (проекцию) ̃︀V ∪ ̃︀E
в V ∪ E. Объекты, связанные с ̃︀G, мы будем также обозначать с тильдой. В частности, копии вершин f ∈ F в ̃︀G
обозначим как ̃︀f , и для любой вершины ̃︀v ∈ ̃︀V множество инцидентных ребер в ̃︀G обозначим как ̃︀Ẽ︀v.

Теперь объясним, как задаются предпочтения и функции выбора ̃︀C̃︀v для вершин ̃︀v ∈ ̃︀V. Для вершин в ̃︀W это
делается бесхитростно, а именно:

для вершины wi ∈ ̃︀W (где w ∈ W и 1 ≤ i ≤ q(w)) ФВ ̃︀Cwi – это линейная ФВ, определяе-
мая линейным порядком >wi на ̃︀Ewi , являющимся копией порядка >i

w на Ew.
(8.2)

Для вершин в ̃︀F устройство функций выбора менее тривиально. А именно, для вершины ̃︀f ∈ ̃︀F (копии f в F)
рассмотрим подмножество ребер ̃︀Z ⊆ ̃︀Ẽ︀f и его образ Z = π(̃︀Z) в G, и образуем ̃︀C̃︀f следующим образом:

для каждого w f ∈ C f (Z) в “слое” π−1(w f ) возьмем ребро wi f такое, что wi f при-
надлежит множеству ̃︀Z и при этом имеет минимальный номер i; тогда ̃︀C̃︀f является
объединением взятых элементов.

(8.3)

Пусть 𝒮 обозначает множество стабильных матчингов для рассматриваемой П-модели с графом G и функ-
циями выбора C f ( f ∈ F) и Cw (w ∈ W) (где C f плоттовская и кардинально монотонная, а Cw – последовательная

ФВ, порожденная линейными порядками >1
w, . . . , >

q(w)
w ). Пусть ̃︀𝒮 обозначает множество стабильных матчингов

для КБМ с построенными графом ̃︀G, ФВ ̃︀C̃︀f ( f ∈ F) и линейными порядками >wi . В [16] доказываются следую-
щие ключевые свойства:

(i) для каждого стабильного матчинга ̃︀X ∈ ̃︀𝒮 ограничение отображения π на множество ̃︀X
инъективно;

(ii) отображение π индуцирует биекцию между множествами стабильных матчингов ̃︀𝒮 и 𝒮;

(iii) указанное отображение стабильных матчингов ̃︀X π
↦−→ X дает изоморфизм решеток на ̃︀𝒮 и

𝒮, т.е. для X,Y ∈ 𝒮 выполняются π−1(X ⋏Y) = π−1(X) ̃︀⋏π−1(Y) и π−1(X ⋎Y) = π−1(X) ̃︀⋎π−1(Y)
(где ⋏ и ⋎ обозначают взятие точной нижней грани (meet) и точной верхней грани (join)
для 𝒮, и аналогичные обозначения с тильдами применяются для ̃︀𝒮).

(8.4)
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Основываясь на (8.4) и используя полученные результаты о ротациях для КБМ, мы можем дать описание
ротаций для П-модели.

Для этого рассмотрим ротацию ̃︀R в графе ̃︀G. Она применяется для перехода от некоторого стабильного мат-
чинга ̃︀X ∈ ̃︀S к непосредственно следующему (в смысле порядка ≺̃︀F в ̃︀S ) стабильному матчингу ̃︀X′, а именно,̃︀X′ = (̃︀X − ̃︀R−) ∪ ̃︀R+. Положим X := π(̃︀X) и X′ := π(̃︀X′). В силу (8.4)(i),(ii), π устанавливает биекцию между ̃︀X и X и
между ̃︀X′ и X′, откуда легко заключить, что ̃︀R− изоморфно π(̃︀R−), и ̃︀R+ изоморфно π(̃︀R+). Априори мы не можем
исключить ситуацию ∆ := π(̃︀R−) ∩ π(̃︀R+) ̸= ∅ (в этом случае имеется ребро w f ∈ E такое, что wi f ∈ ̃︀R− и w j f ∈ ̃︀R+
для некоторых i ̸= j), и в данный момент мы оставляем возможность ∆ ̸= ∅ как открытый вопрос. Определим

R− := π(̃︀R−) − ∆ и R+ := π(̃︀R+) − ∆.

Тогда X′ = (X − R−) ∪ R+, |R−| = |R+|, и оба множества R−,R+ непустые (иначе было бы ̃︀X ̸= ̃︀X′, но π(̃︀X) = π(̃︀X′),
вопреки (8.4)(ii)).

Можно видеть, что R := π(̃︀R) − ∆ порождает реберно простой цикл в G (индуцированный ротацией ̃︀R, рас-
сматриваемой как цикл), и в этом цикле чередуются ребра из R− (“отрицательные”) и R+ (“положительные”).
Это R (рассматриваемое, в зависимости от контекста, как множество ребер или как цикл) играет роль ротации
в G, и мы говорим, что стабильный матчинг X′ получается из X применением ротации R.

(Мы также оставляем открытым вопрос, может ли ротация R проходить через одну и ту же вершину в W
более одного раза, что невозможно для ̃︀R и ̃︀W.)

Суммируя сказанное выше, мы можем получить из свойств в (8.4) и результатов для КБМ следующие ожи-
даемые утверждения:

(i) каждый стабильный матчинг X ∈ 𝒮 может быть получен из минимального мат-
чинга в (𝒮,≺F) применением последовательности ротаций в G;

(ii) отображение ̃︀R ↦→ R = π(̃︀R)− (π(̃︀R+)∩ ̃︀R−)) дает биекцию между ротациями в ̃︀G и G;

(iii) отображение π индуцирует изоморфизм между посетами ротаций для ̃︀G и G.

(8.5)

Заметим, что размеры графа ̃︀G, полученного репликацией каждой вершины w ∈ W копиями в количестве
q(w) ≤ |F|, можно грубо оценить как O(|W ||F|) вершин и O(|W ||F|2) ребер. Поэтому из теоремы 5.1 можно заклю-
чить, что

для П-модели с графом G = (V = W ⊔ F, E) множество ротаций и их посет могут
быть построены за время O(|W |2|F|4) (включая число обращений к оракулам).

(8.6)

(При |W | > |F| эта оценка слегка улучшает оракульную оценку O(|W |3|F|3) для построения посета ротаций для
СБМ в работе [14].)

Эффективное построение ротаций и их посета в П-модели позволяет эффективно решать задачу миними-
зации линейной функции на множестве стабильных матчингов, применяя метод, аналогичный описанному
в разд. 6.

В заключении, заметим также, что при рассмотрении П-модели на графе G с возможными кратными реб-
рами можно действовать как изложено в замечании 1 (в разд. 2), получая сведение к П-модели на графе G′ без
кратных ребер (с индуцированными ФВ для прежних вершин и линейными порядками для добавленных вер-
шин), и затем описывать связь ротаций в G, G′ и ̃︀G′, рассуждая как выше и используя замечание 2 из разд. 5
(подробности мы здесь опускаем).

Автор благодарит Данилова Владимира Ивановича за полезные обсуждения по теме статьи и информиро-
вание о работе [16].
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Abstract. A model of stable edge subsets (“matchings”) in a bipartite graph G = (V, E) is considered, in
which preferences for vertices of one side (“firms”) are given by choice functions with standard properties
of consistency, substitutability, and cardinal monotonicity, and preferences for vertices of the other side
(“workers”) are given by linear orders. For such a model, we give a combinatorial description of the structure
of rotations and propose an algorithm for constructing a rotation poset with a time complexity estimate
O(|E|2) (including calls to oracles associated with choice functions). As a consequence, a “compact” affine
representation of stable matchings can be obtained and related problems can be solved efficiently.
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