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Рассматривается задача о течении идеальной жидкости вдоль плоской поверхности при наличии на ней непо-
движного зернистого слоя в форме полубесконечной ступеньки конечной толщины, состоящей из бесконеч-
ного числа одинаковых сферических гранул, статистически равномерно распределенных в слое. Задача ре-
шается на основе использования ранее разработанного метода самосогласованного поля, позволяющего изу-
чать эффекты гидродинамического взаимодействия большого числа сферических частиц в потоках идеальной
жидкости, в том числе при наличии внешних границ, и получать усредненные динамические характеристики
таких потоков. В первом приближении по объемной доле гранул в слое получена аналитическая функция,
описывающая усредненное поле скоростей жидкости как внутри, так и вне этого слоя. Библ. 26. Фиг. 6.
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ВВЕДЕНИЕ

Одной из ключевых задач описания динамики дисперсных сред с повышенной концентрацией дисперс-
ной фазы является учет эффектов коллективного гидродинамического взаимодействия большого количества
дисперсных частиц во внешнем потоке несущей сплошной среды. Теоретическое исследование этой проблемы
представляет собой чрезвычайно сложную задачу, поскольку, по сути, она представляет собой разновидность
известной фундаментальной проблемы «многих тел», которая до сих пор не имеет точного решения ни в од-
ной области науки. В связи с этим решение подобных задач долгое время базировалось на построении различ-
ных приближенных феноменологических моделей, первой из которых была так называемая модель единичной
ячейки [1, 2]. На ее основе были получены первые приближенные результаты по динамике дисперсных сред [3].
В дальнейшем многие из этих результатов были уточнены на основе физически более строгих теоретических мо-
делей, непосредственно учитывающих гидродинамическое взаимодействие дисперсных частиц [4–7]. Позднее
был разработан ряд других подходов к решению задач динамики дисперсных сред [8, 9]. Однако в рамках таких
подходов одной из основных проблем является также правильный учет межфазного взаимодействия.

В последнее время широкое распространение получили методы исследования динамики дисперсных сред,
основанные на различных феноменологических моделях межфазного взаимодействия с последующим числен-
ным интегрированием осредненных уравнений движения фаз [10–15]. Такие методы, очевидно, имеют ряд пре-
имуществ по сравнению с чисто теоретическими подходами. К ним относится возможность исследования задач
со сложной геометрией течения и в широком диапазоне значений определяющих гидродинамических крите-
риев (в том числе числа Рейнольдса). Однако они имеют и ряд недостатков. Математически априори довольно
сложно определить степень достоверности результатов численных расчетов, что часто приводит к необходимо-
сти проведения параллельных экспериментальных исследований. В принятых феноменологических моделях
часто используются эмпирические коэффициенты, что также снижает степень математической строгости мо-
дели, а соответственно и степень достоверности полученных результатов. При этом любой расчет производится
для дискретного набора значений определяющих параметров. Поэтому выявление зависимостей физических
характеристик дисперсных потоков от всего комплекса определяющих параметров является чрезвычайно тру-
доемкой задачей. В этом плане аналитические результаты теоретических методов более информативны.

1) Работа выполнена в рамках Государственного задания, номер гос. регистрации темы: AAAA–A19–119012290136–7.
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Ниже рассматривается модель зернистого слоя, образованного бесконечным числом сферических гранул,
расположенных в слое в виде полубесконечной ступеньки конечной толщины на плоской поверхности. В свое
время был разработан метод самосогласованного поля [16, 17] для получения аналитических решений задач
о совместном движении любого конечного числа сфер в идеальной жидкости [18–22], в том числе при нали-
чии плоской границы. Как было показано [20, 21], этот метод применим также к задачам совместного движения
сфер при наличии жестких связей между ними. В рамках принятой модели зернистого слоя это позволяет на ос-
нове использования данного метода решить задачу о течении идеальной жидкости вдоль плоской поверхности
при наличии любого конечного числа N сферических гранул. Последующее применение процедуры усредне-
ния [6, 7] по различным возможным положениям гранул в слое позволяет получить усредненное поле скоростей
жидкости как внутри, так и вне зернистого слоя в явном аналитическом виде.

1. КОНЕЧНАЯ СИСТЕМА НЕПОДВИЖНЫХ ЧАСТИЦ ВО ВНЕШНЕМ ПОТОКЕ ЖИДКОСТИ
ПРИ НАЛИЧИИ ПЛОСКОЙ ГРАНИЦЫ

Рассмотрим систему из N сферических гранул радиуса a, погруженных в идеальную несжимаемую жидкость
вблизи плоской бесконечной поверхности. Будем считать, что гранулы каким-то образом жестко связаны друг
с другом и с заданной поверхностью и, следовательно, не могут перемещаться относительно поверхности. Про-
нумеруем все сферы от 1 до N и обозначим безразмерные координаты центров сферических гранул в декартовой
системе координат Ox1x2x3 как x(i)

γ (i = 1, 2, . . . ,N, γ = 1, 2, 3). Рассмотрим задачу, когда в некоторый момент вре-
мени первоначально покоящаяся на бесконечности жидкость импульсно приводится в состояние движения с
заданной постоянной скоростью U(0)

γ , направленной вдоль плоской поверхности W (см. фиг. 1).

x*3

U (0)

W 0

a

H*

x*1

Фиг. 1. Схема течения жидкости вдоль плоской поверхности W с находящимся на ней зернистым слоем толщиной H* в де-
картовой системе координат. Ось Ox2 перпендикулярна плоскости рисунка. Надстрочный индекс * используется для обо-
значения соответствующих размерных величин.

Классическая постановка этой задачи в предположении потенциальности течения жидкости, как известно,
состоит в решении уравнения Лапласа для потенциала скорости φ и выполнении граничных условий скольже-
ния на границе W и на поверхности всех гранул.

В рамках разработанного ранее метода самосогласованного поля [16–22] краевые задачи динамики N сфер
в потенциальных потоках идеальной жидкости сводятся к формальному решению системы уравнений для тен-
зорных коэффициентов C(i)

γ1···γn
, входящих в полученное точное решение таких задач. Для сформулированной

выше задачи при наличии плоской границы это решение для безразмерного потенциала скорости φ имеет вид
[16, 17]:

φ = φ0 +

N∑︁
i=1

∞∑︁
n=1

nα2n+1

n + 1
C(i)
γ1···γn

X(i)
γ1
· · · X(i)

γn

R2n+1
i

+

N∑︁
i=1

∞∑︁
n=1

nα2n+1

n + 1
Tβ1γ1 · · · TβnγnC

(i)
β1···βn

X̃(i)
γ1
· · · X̃(i)

γn

R̃2n+1
i

, (1.1)

где

φ0 = eγxγ = x1, X(i)
γ = xγ − x(i)

γ , X̃(i)
γ = xγ − Tβγx

(i)
β
, Ri =

√︁
X(i)
γ X(i)
γ , ̃︀Ri =

√︁
X̃(i)
γ X̃(i)
γ ,

Tβγ =

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦, α = a/L, eγ = {1, 0, 0} ,
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а тензорные коэффициенты C(i)
γ1···γn

удовлетворяют бесконечной (1 ⩽ n < ∞) системе алгебраических уравнений:

C(i)
γ1···γn

=
1
n!

∂n

∂xγ1 · · · ∂xγn

⎧⎨⎩eβX
(i)
β
+
∑︁

j ̸=i

∞∑︁
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kα2n+1
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X( j)
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· · · X( j)

βk

R2k+1
j

+

+
∑︁

j ̸=i

∞∑︁
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kα2n+1

k + 1
Tδ1β1 · · · TδkβkC

( j)
δ1···δk

X̃( j)
β1
· · · X̃( j)

βk

R̃2k+1
j

⎫⎬⎭
⃒⃒⃒⃒
⃒⃒
Ri=0

.

(1.2)

Здесь и далее приняты тензорные обозначения переменных с условием суммирования по повторяющимся
нижним координатным индексам, принимающим значения от 1 до 3. Это условие не распространяется только
на переменные Ri и R̃i. Верхние индексы относятся к частицам, и чтобы отличать их от показателя степени,
они заключены в круглые скобки. Соотношения (1.1) и (1.2) записаны в безразмерном виде. В качестве мас-
штабов соответствующих величин приняты скорость потока U(0), заданная на бесконечности, и характерное
расстояние между центрами соседних гранул L.

Следует подчеркнуть, что решение (1.1) удовлетворяет граничным условиям скольжения на поверхности W
и всех гранул при условии, что тензорные коэффициенты C(i)

γ1···γn
удовлетворяют уравнениям (1.2).

Таким образом, задача определения потенциала скорости (1.1) сводится к нахождению коэффициентов
C(i)
γ1···γn

на основе системы уравнений (1.2). Для приближенного решения этой системы примем предположе-
ние о малости параметра α (α ≪ 1). Заметим, что это не очень строгое ограничение, поскольку параметр α
всегда удовлетворяет условию α ⩽ 1/2 для всех гранулированных сред, состоящих из сферических частиц. При
условии α ≪ 1 все неизвестные функции можно искать в виде рядов по степеням этого параметра:

C(i)
γ1···γn

=

∞∑︁
k=0

α
kC(i)(k)
γ1···γn
, φ =

∞∑︁
k=0

α
k
φ

(k). (1.3)

Подставляя разложения (1.3) в систему (1.2) и приравнивая члены с одинаковыми степенями малого параметра,
получим систему рекуррентных соотношений:

C(i)(k)
γ1···γm

=

N∑︁
j=1

[ k−1
2 ]∑︁

n=1

n
n + 1

C(i)(k−2n−1)
β1···βn

D( j,i)
γ1···γm,β1···βn

, (1.4)

где
C(i)(0)
γ = eγ; C(i)(0)

γ1···γm
= 0, m > 1, D( j,i)

γ1···γm,β1···βn
=
(︀
1 − δ ji

)︀
Q( j,i)
γ1···γm,β1···βn

+ Tδ1β1 · · · TδnβnG
( j,i)
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,
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=
1
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· · · X( j)

βn
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j

)︃⃒⃒⃒⃒
⃒
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, G( j,i)
γ1···γm,β1···βn

=
1

m!
∂m

∂xγ1 · · · ∂xγm

(︃
X̃( j)
β1
· · · X̃( j)

βn
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j

)︃⃒⃒⃒⃒
⃒
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,

δ ji – символ Кронекера, а квадратные скобки над знаком суммы обозначают целую часть числа.
Полученные рекуррентные соотношения (1.4) позволяют определить все тензорные коэффициенты C(i)

γ1···γn

в аналитическом виде в любом заданном приближении по малому параметру α. В настоящей статье они опре-
делены с точностью до O

(︀
α8
)︀
. Подстановка полученных таким образом тензорных коэффициентов C(i)

γ1···γn
в вы-

ражение для потенциала скорости (1.1) с учетом соотношений (1.3) в конечном итоге приводит к следующему
выражению для продольной U1 и поперечной U3 безразмерных составляющих скорости жидкости:

U1 = 1 +
α3

2

N∑︁
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(︂
1

R3
i
+

1
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i
− 3X(i)

1
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(1.5)

U3 = −
3α3

2
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Следует отметить, что при решении системы уравнений (1.4) в данной работе учитываются члены, описы-
вающие только парные взаимодействия частиц. Члены, описывающие взаимодействия более высокого поряд-
ка, здесь опущены, поскольку они несущественны при последующем вычислении осредненных характеристик
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в рамках данной работы. Если необходимо получить более точные выражения для тензорных коэффициентов
C(i)(k)
γ1···γm

и, соответственно, для скорости жидкости (1.5), включая слагаемые, описывающие многочастичные вза-
имодействия, достаточно просто учесть соответствующие члены при расчетах по формулам (1.4).

2. ВЫЧИСЛЕНИЕ СРЕДНИХ ХАРАКТЕРИСТИК ПОТОКА

Формулы (1.5) позволяет с высокой точностью определить скорость жидкости при наличии любого конеч-
ного числа N сферических гранул для различных конфигураций их взаимного расположения в пространстве.
Однако для систем, состоящих из очень большого числа частиц, реализация такой процедуры расчета стано-
вится затруднительной и вряд ли имеет смысл. В этом случае удобнее перейти к усреднённому описанию дина-
мики таких структур на основе известной процедуры усреднения [6, 7] для различных возможных конфигура-
ций частиц в пространстве. В рамках такой процедуры суммирование известных функций в соотношении (1.5)
фактически заменяется интегрированием по переменной x(i)

γ , при условии, что частицы не пересекаются друг
с другом, с заданной поверхностью W и с точкой, в которой рассчитывается средняя скорость.

Примем модель зернистого слоя как совокупность бесконечного числа одинаковых сферических гранул ра-
диуса α, центры которых статистически равномерно распределены над плоской поверхностью W в слое, име-
ющем вид полубесконечной ступени конечной толщина x(i)

1 ⩾ α ∩ α ⩽ x(i)
3 ⩽ (H − α). В этом случае все гранулы

расположены в пограничном слое толщиной H = H*/L и не пересекаются с заданной поверхностью W и плос-
костями x3 = H и x1 = 0 (см. фиг. 1). В рамках принятых допущений весовой функцией в процедуре усреднения
будет численная концентрация гранул в приграничном слое, которая является постоянной величиной в объеме
усреднения. Это упрощает расчеты и позволяет получить результаты в аналитическом виде. Если при расчете
средних значений ограничиться первым приближением по объемной доле ϕ гранул в слое, то в выражении для
скорости жидкости вида (1.5) необходимо учитывать только те члены, которые описывают парные взаимодей-
ствия частиц. Взаимодействия более высокого порядка дают вклад только в коэффициенты при более высоких
степенях параметра ϕ. Поэтому в формулах (1.5) они заранее опущены.

Применение процедуры усреднения по ансамблю [6, 7] к первому выражению в правой части равенства (1.5)
в рамках сделанных выше предположений приводит к следующим выражениям для безразмерных компонент
средней скорости жидкости:

Ux (x, z) = U1 = 1 + kx (x, z)ϕ, Uz (x, z) = U3 = 1 + kz (x, z)ϕ. (2.1)

Вне зернистого слоя функции kx (x, z) и kz (x, z) имеют вид

kx (x, z) = qx (x, z) , kz (x, z) = qz (x, z) , (2.2)

где

qx (x, z) =
3

4π

(︂
arctan

(︂
h − z − 1

x − 1

)︂
+ arctan

(︂
h + z − 1

x − 1

)︂
+ arctan

(︂
z − 1
x − 1

)︂
− arctan

(︂
z + 1
x − 1

)︂)︂
,

qz (x, z) =
3

4π
ln

(︃(︀
(x − 1)2 + (z − 1)2)︀ (︀(x − 1)2 + (h + z − 1)2)︀(︀
(x − 1)2 + (z + 1)2)︀ (︀(x − 1)2 + (h − z − 1)2)︀

)︃
.

Внутри зернистого слоя функции kx (x, z) и kz (x, z) имеют вид:

kx (x, z) = qx (x, z) +

⎧⎪⎨⎪⎩
k1 (z) , x ⩾ 2 ∩ 0 ⩽ z < 2,
k2 (z) , x ⩾ 2 ∩ 2 ⩽ z < h − 2,
k3 (z) , x ⩾ 2 ∩ h − 2 ⩽ z < h,

(2.3)

kz (x, z) = qz (x, z) ,

k1 (z) = −
1
4

(︂
1 +

1
8z3 +

z2 (3 − z)
2

−
1 + 2z − 2z2 + 12z3 + 6z4

8z3
√

1 + 4z

)︂
, k2 (z) = −

1
2

(︂
1 +

1
8z3

)︂
,

k3 (z) =
1
8

(h − z − 1)
(︀
(h − z − 1)2 − 3

)︀
−

1
32z3

(︃
1 +

1 + 2z (h − 1)
(︀
1 + 6z2

)︀
− 2z2

(︀
(h − 1)2 − 3z2

)︀
√

1 + 4z (h − 1)

)︃
,

x = x1/α = x*1/a, z = x3/α = x*3/a, h = H/α = H*/a,

где x*1, x*3 и H* – размерные значения соответствующих величин. Итак, процедура усреднения автоматически
приводит к тому, что радиус гранул является характерным линейным масштабом рассматриваемой задачи.
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Усреднение второго и третьего слагаемых в правой части (1.5) приводит к громоздким выражениям. При
этом их суммарный вклад в конечный результат для среднего профиля скорости жидкости, как показывает
сравнение всех полученных функций, не превышает 1%. В связи с этим выражения для этих функций в ко-
нечном результате (2.1)–(2.3) опущены. Следует также отметить, что в настоящей работе выражения для ком-
понент скорости жидкости Ux (x, z) и Uz (x, z) получены для всей области течения, за исключением области
0 < x < 2 ∩ 0 < z < h.

Для иллюстрации полученного результата (2.1)–(2.3) на фиг. 2 и 3 показана зависимость осредненной про-
дольной скорости жидкости Ux (x, z) от координаты z в различных сечениях потока при заданных значениях
объемной доли гранул ϕ и толщины слоя h.

Как и ожидалось, полученный профиль скорости жидкости удовлетворяет граничному условию
lim
z→∞

Ux (x, z) = 1 в любом сечении потока, т.е. при любом заданном значении координаты x. Как видно из

представленных результатов, резкое изменение профиля скорости жидкости происходит вблизи поперечной
границы уступа в области 0 ⩽ x ⩽ 2, т.е. на расстоянии порядка диаметра гранулы. При этом профиль усред-
ненной продольной скорости жидкости Ux внутри слоя обретает характерную неоднородную структуру вблизи
стенки и вблизи верхней свободной границы слоя. В любом сечении слоя максимум скорости достигается на
границах слоя, а затем внутри слоя на расстоянии порядка нескольких размеров зерен от его границ величина
скорости обретает примерно одинаковое значение. Эффект «проскальзывания» жидкости вблизи стенки был
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Фиг. 2. Графики зависимости усредненной по ансамблю скорости жидкости Ux = U1 от координаты z = x3/a в различных
сечениях потока перед поперечной границей уступа (x ⩽ 0) при заданном значении объемной доли гранул ϕ = 0.25 и
толщины слоя h = H*/a = 50. Надстрочный индекс * используется для обозначения соответствующих размерных величин.
Пунктирная линия обозначает верхнюю границу зернистого слоя.
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Фиг. 3. Графики зависимости усредненной по ансамблю скорости жидкости Ux = U1 от координаты z = x3/a в различных
сечениях потока за поперечной границей уступа (x ⩾ 0) при заданном значении объемной доли гранул ϕ = 0.25 и толщины
слояh = H*/a = 50. Надстрочный индекс * используется для обозначения соответствующих размерных величин. Пунктир-
ная линия обозначает верхнюю границу зернистого слоя.
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теоретически исследован в работе [22], в которой была рассмотрена похожая задача – о течении идеальной
жидкости вдоль стенки при наличии стационарного зернистого слоя конечной толщины, расположенного
перпендикулярно стенке. В упомянутой работе было показано, что этот эффект является прямым следствием
коллективного гидродинамического взаимодействия частиц слоя, и он имеет место при условии статистически
равномерного распределения частиц в слое, т.е. даже при отсутствии разреженности слоя вблизи стенки.
Как следует из результатов настоящей работы, этот эффект имеет место (см. фиг. 3) также вблизи внешней
свободной границы слоя, и он также является прямым следствием коллективного гидродинамического
взаимодействия частиц.

В частном случае при x→ +∞, т.е. вниз по потоку вдали от поперечной границы уступа, результат для профи-
ля скорости жидкости (2.1)–(2.3) совпадает с полученным ранее [23]. В этой области (x → +∞) течение имеет
следующую характерную особенность – возмущение заданного внешнего течения, обусловленное наличием
гранул, образующих зернистый слой, не выходит за пределы этого слоя. При этом на границах слоя при z = 0
и z = h скорость жидкости достигает значения, равного заданной скорости внешнего потока, с нулевыми про-
изводными. А внутри слоя на расстоянии порядка диаметра гранулы от его границ скорость жидкости имеет
примерно постоянное значение Ux ≈ 1 − ϕ/2 , не зависящее от толщины слоя.

Зависимости скорости жидкости Ux (x, z) от продольной координаты x на стенке (z = 0) и на уровне верхней
границы зернистого слоя (z = h) представлены на фиг. 4. Как видно, функции имеют минимум перед попереч-
ной границей уступа и максимум после него. В частности, минимальное и максимальное значения скорости
жидкости на стенке (z = 0) достигаются в точках xmin = 1 −

√
h − 1 и xmax = 1 +

√
h − 1 соответственно. Зависи-

мость xmin и xmax от параметров задачи при условии z ̸= 0 имеет более сложный вид.

Зависимости усредненной поперечной скорости жидкости Uz (x, z) от координаты z в различных сечениях
потока при заданных значениях объемной доли гранул ϕ и толщины слоя h представлены на фиг. 5.

Как и ожидалось, поперечная скорость жидкости Uz (x, z) на стенке (z = 0) равна нулю при любом значе-
нии переменной x. Максимальные положительные значения поперечной скорости наблюдаются вблизи точки
пересечения продольной и поперечной границ зернистого слоя. Отрицательные значения поперечной скоро-
сти наблюдаются на небольшой области в районе точки пересечения стенки и поперечной границы зернистого
слоя. Линейный размер этой области имеет порядок нескольких диаметров гранул. Как и ожидалось, попереч-
ная скорость жидкости удовлетворяет граничному условию lim

z→∞
Uz (x, z) = 0.

Полученная характерная картина течения жидкости в области вблизи поперечной границы слоя представ-
лена на фиг. 6.
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Фиг. 4. Графики зависимости усредненной по ансамблю скорости жидкости Ux = U1 от продольной координаты x = x1/a
для двух значений координаты z = x3/a (z = 0 и z = h) при заданном значении объемной доли гранул ϕ = 0.25 и толщины
слояh = H*/a = 50. Надстрочный индекс * используется для обозначения соответствующих размерных величин.
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Фиг. 5. Графики зависимости усредненной по ансамблю скорости жидкости Uz = U3 от координаты z = x3/a в различ-
ных поперечных сечениях потока при заданном значении объемной доли гранул ϕ = 0.3 и толщины слояh = H*/a = 10.
Надстрочный индекс * используется для обозначения соответствующих размерных величин. Пунктирная линия обознача-
ет верхнюю границу зернистого слоя.

Фиг. 6. Характерная итоговая картина течения жидкости в области вблизи поперечной границы слоя. Пунктирная линия
обозначает границу гранулированного слоя.

3. ЗАКЛЮЧЕНИЕ

В данной работе теоретически исследована задача о течении жидкости через пристеночный неподвижный
зернистый слой в виде полубесконечной ступеньки. Задача решена с учетом эффектов коллективного гидроди-
намического взаимодействия гранул в заданном внешнем потоке. Получено аналитическое решение для усред-
ненного профиля скорости жидкости как снаружи, так и внутри зернистого слоя с учетом влияния внешней
плоской границы. Задача решалась в рамках модели идеальной (невязкой) жидкости для несущей сплошной
среды в первом приближении по объемной доле гранул в слое при условии их статистически равномерного
распределения в пространстве внутри слоя.
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Следует также отметить, что в рамках предложенного метода решения нет необходимости использовать
какие-либо дополнительные предположения, в том числе феноменологические. Как известно, используемая
в данной работе модель идеальной (невязкой) жидкости для сплошной несущей среды приближенно описы-
вает течение жидкостей и газов при высоких числах Рейнольдса. Кроме того, результат (2.1)–(2.3) получен в
первом приближении по объемной доле гранул ϕ в слое, т.е. для малых значений этого параметра. Однако ре-
альная точность и пределы применимости результата (2.1)–(2.3) по числу Рейнольдса и объемной доле гранул в
слое могут быть установлены только экспериментально. Следует отметить, что в записи решения (1.5) приведе-
ны только те функции, которые при усреднении дают вклад в коэффициент перед первой степенью объемной
доли гранул ϕ в слое в формулах (2.1)–(2.3). Для получения решения вида (2.1)–(2.3) с точностью до более вы-
соких степеней объемной доли ϕ просто необходимо при решении системы (1.4) учесть все функциональные
члены, описывающие взаимодействия частиц соответствующего порядка, а затем применить к ним процедуру
усреднения [6, 7].

Это возможно в рамках разработанного метода [16, 17], что может стать предметом дальнейших исследова-
ний.

В работе для поставленной гидродинамической задачи в рамках модели идеальной жидкости получено ана-
литическое решение одного из классических уравнений, относящегося не только к гидродинамике, но и к ряду
других областей физики. Полученное в работе аналитическое решение гидродинамической задачи может быть
непосредственно использовано, например, для теоретического исследования процессов переноса в дисперс-
ной среде с учетом коллективного взаимодействия дисперсных частиц, поскольку решение таких задач также
основано на решении уравнения Лапласа. Возможность такого подхода обосновал Фельдерхоф (см. [5]) в 1991 г.
В рамках этого подхода Бошенятов [24–26] получил коэффициенты переноса (теплопроводность, электропро-
водность) для дисперсных сред (в том числе, сложно-структурированных) с учетом эффектов коллективного
взаимодействия частиц. В этих работах непосредственно использовались результаты решения соответствую-
щих гидродинамических задач в рамках модели идеальной жидкости.
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Abstract. The problem on the flow of an ideal fluid along a flat surface in the presence of a fixed granular
layer on it in the form of a semi-infinite step of finite thickness consisting of an infinite number of identical
spherical granules statistically uniformly distributed in the layer is considered. The problem is solved based
on using the previously developed method of the self-consistent field, which allows studying the effects of
hydrodynamic interaction of a large number of spherical particles in flows of an ideal fluid, including in the
presence of external boundaries, and obtaining the averaged dynamic characteristics of such flows. In the
first approximation in the volume fraction of granules in a layer, an analytical function is obtained that
describes the averaged velocity field of the fluid both inside and outside this layer.

Keywords: hydrodynamic interaction, fixed granular layer, ideal fluid, potential flow, self-consistent field
method
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