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1. ВВЕДЕНИЕ

Решения эволюционных линейных дифференциальных уравнений с независящими от времени коэффи-
циентами представляются C0-полугруппами линейных операторов, а в случае переменных коэффициентов –
эволюционными двухпараметрическими семействами операторов [1, 2]. В работах [3–5] разрабатываются ме-
тоды представления однопараметрических эволюционных полугрупп математическими ожиданиями функци-
оналов от случайных процессов, а в работах [6–8] полугруппы представляются функциональными интеграла-
ми по пространству траекторий процессов. Методы континуального интегрирования в [9] и методы итераций
Фейнмана–Чернова в [10] применяются к постронию аппроксимаций решений эволюционных уравнений и
анализу сходимости таких аппроксимаций.

Конструкция континуального интеграла, описывающего возмущенную полугруппу, была рассмотрена в ра-
боте [11] для случая, когда эволюционное уравнение имеет независящие от времени коэффициенты и эво-
люционные семейства операторов являются однопараметрическими полугруппами. Там же получена формула
Фейнмана–Каца, позволяющая выразить возмущенную полугруппу с помощью континуального интеграла от
зависящего от возмущения функционала на пространстве траекторий по цилиндрической псевдомере, опреде-
ляемой невозмущенной полугруппой. Цилиндрическая псевдомера отличается от цилиндрической меры, за-
данной на классе всех борелевских цилиндров, областью определения, порожденной классом цилиндров с ба-
зой из некоторой (возможно, меньшей, чем борелевская) алгебры подмножеств координатного пространства.
Иногда для краткости такие псевдомеры будем называть мерами.

В рамках изучаемого в настоящей статье метода обобщенный случайный процесс со значениями в неко-
тором измеримом пространстве (E,𝒜) отождествляется с марковской цилиндрической псевдомерой, заданной
на алгебре цилиндрических множеств 𝒜𝒞yl в пространстве отображений временного промежутка T = R+ про-
цесса в измеримое пространство (E,𝒜(ℛ)) его значений (см. [11]). Построено биективное отображение V мно-
жества марковских комплекснозначных конечно-аддитивных мер, заданных на цилиндрической алгебре𝒜𝒞yl,

1)Работа выполнена при частичной финансовой поддержке РНФ. Разделы 2, 3, 4 работы выполнены Ю.Н. Орловым, а разделы 5 и 6 — В.Ж.
Сакбаевым. Исследование В.Ж. Сакбаева выполнено при финансовой поддержке РНФ (проект 24-11-00039 в Математическом институте
им. В.А. Стеклова РАН).
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на множество двухпараметрических эволюционных семейств линейных ограниченных операторов, действую-
щих в гильбертовом пространстве L2(E) функций, квадратично интегрируемых по мере Лебега на пространстве
значений случайного процесса E. Марковское свойство цилиндрической меры (точное определение см. ниже)
состоит в том, что значение меры на всей совокупности цилиндрических множеств (а значит, и на алгебре𝒜𝒞yl)
определяется сужением меры на совокупность цилиндрических множетв с двухвременными цилиндрическими
условиями.

В настоящей работе получено обобщение конструкции континуального интеграла Фейнмана на случай
эволюционных уравнений с переменными операторными коэффициентами, порождающими двухпарамет-
рические эволюционные cемейства операторов (см. [1, 2]). Метод построения формул Фейнмана–Каца для
решения уравнения Шрёдингера с переменным генератором впервые предложен, насколько нам известно,
в [12]. Условия применимости построенного обобщения расширяют возможности аппроксимации формула-
ми Фейнмана–Каца решений эволюционных уравнений с переменными генераторами. Получена формула
Фейнмана–Каца, выражающая возмущенное двухпараметрическое эволюционное семейство операторов с по-
мощью континуального интеграла от зависящего от нестационарного возмущения функционала на простран-
стве траекторий по цилиндрической мере, являющейся образом действия биекции V−1 на невозмущенное эво-
люционное семейство операторов.

2. ОБОЗНАЧЕНИЯ И ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

В настоящей работе будет построено обобщение представления однопараметрических полугрупп с помо-
щью цилиндрических мер на случай двухпараметрических эволюционных семейств операторов, разрешающих
дифференциальные уравнения с зависящими от времени коэффициентами. Для реализации этой цели нам по-
требуется ввести определения, описывающие операторнозначные функции, меры на пространстве траекторий
и свойства этих объектов. Также будет кратко изложена теория, описывающая связь однопараметрических се-
мейств операторов с цилиндрическими мерами на пространстве траекторий.

Пусть E = Rd при некотором d ∈ N – конечномерное евклидово пространство, снабженное мерой Лебега;
H = L2(E) – гильбертово пространство функций на E, квадратично интегрируемых по мере Лебега; и пусть
B(H) – банахово пространство ограниченных линейных операторов, действующих в H.

Пустьℛ есть σ-кольцо ограниченных борелевских множеств пространства E и𝒜R – порожденная этим коль-
цом σ-алгебра. Пусть M(R+, E) – линейное отображение временной полуоси R+ в пространство E, называемое
пространством траеторий, и пусть 𝒜Cyl – алгебра цилиндрических множеств в пространстве траекторий, т.е.
алгебра, порожденная полуалгеброй Cyl (см. [8]) цилиндрических множеств вида

Ct
B = Ct1,...,tn

B1,...,Bn
= {x ∈ M(R+, E) : x(t j) ∈ B j, j = 1, . . . , n}, (1)

n ∈ N, B1, . . . , Bn ∈ 𝒜R, 0 ≤ t1 < . . . < tn < +∞.

Множество t = {t1, . . . , tn} называется набором временных индексов цилиндрического множества (1), а множе-
ство B = {B1, . . . , Bn} – базой цилиндрического множества.

Через 𝒜m(H) обозначим абелеву алгебру операторов умножения на функцию, принадлежащую банахову
пространству L∞(E) измеримых ограниченных функций E → C. Символомℳ(R+, B(H)) обозначим линейное
пространство отображений полуоси R+ в пространство B(H) и положим

ℳm(R+, B(H)) = {F ∈ ℳ(R+, B(H)) : F(0) ∈ 𝒜m(H)}.

Обозначим через a(𝒜Cyl) линейное пространство комплекснозначных аддитивных функций множества
(конечно-аддитивных мер), заданных на алгебре𝒜Cyl.

Определим отображение

Λ :ℳm(R+, B(H))→ a(𝒜Cyl), Λ(F) = µF, ImΛ = aΛ(𝒜Cyl),

удовлетворяющее следующим условиям:

µ
F(Ct

B) = (χBn ,F(tn − tn−1)PBn−1 . . .PB1F(t1 − t0)χB0 ), n ∈ N, Bi ∈ ℛ, ∀ i = 0, . . . , n. (2)

Так как F(0) ∈ 𝒜m, то F(0)(∙) = f (x)(∙), гдe f ∈ L∞(E).Потому для n = 0 и для произвольного t0 ⩾ 0 положим:

µ
F(Ct0

B ) =

⎧⎪⎨⎪⎩
(χB, F(0)χB) =

∫︀
B

f (x) dλ(x), B ∈ ℛ,

M0 −
∫︀

E∖B
f (x) dλ(x), B ∈ 𝒜(ℛ), B /∈ ℛ,

(3)
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где M0 ∈ C – некоторая фиксированная константа и µF(ℳ(R+, E)) = M0 (см. [13]).
Пусть C t

B ∈ 𝒞yl. Пусть m ∈ N – максимальный номер среди тех, которые соответствуют множествам в базе
B = {B1, . . . , Bn}, не лежащим в кольце ℛ. Tогда из условия аддитивности функции µF на алгебре a(𝒜Cyl) следует
равество

µ
F(C t0, ...,

B0, ...,
tm−1,
Bm−1

tm,
, Bm,

tm+1,
Bm+1,

...,

...,
tn
Bn

) =

= µF(C t0, ...,
B0, ...,

tm−1,
Bm−1,

tm+1,
Bm+1,

...,

...,
tn
Bn

) − µF(C t0, ...,
B0, ...,

tm−1,
Bm−1

tm,
, E∖Bm,

tm+1,
Bm+1,

...,

...,
tn
Bn

).
(4)

Условие (4) позволяет продолжить функцию множества µF, заданную равенствами (2)—(3), на всю алгебру
a(𝒜Cyl).

Теорема 1 (см. [8]). Для каждого отображения F ∈ ℳm(R+, B(H)) существует единственная мера Λ(F) ∈
∈ a(𝒜Cyl), удовлетворяющая условиям (2), (3).

Отображение
Λ : ℳm(R+, B(H))→ a(𝒜Cyl)

инъективно.
Определение 1 (см. [8]). Мера µ ∈ a(𝒜Cyl) называется стационарной, если µ(Ct0+s,...,tn+s

B0,...,Bn
) = µ(Ct0,...,tn

B0,...Bn
) ∀ s ≥ 0,

∀ Ct0,...,tn
B0,...,Bn

∈ Cyl.

Каждая цилиндрическая мера µ задает семейство функций

{β
t0,t1,...,tn
µ; B1,...,Bn−1

, B1, . . . , Bn−1 ∈ 𝒜R, 0 ≤ t0 < . . . < tn < +∞},

сопоставляющих каждой упорядоченной паре χB0 , χBn , B0, Bn ∈ ℛ комплексное число с помощью равенства:

β
t0,t1,...,tn
µ; B1,...,Bn−1

(χB0 , χBn ) = µ(Ct
B), Ct

B ∈ Cyl. (5)

Определение 2 (см. [13]). Цилиндрическая мера µ ∈ a(𝒜𝒞yl) называется непрерывной по базе, если она удовле-
творяет следующим условиям:

∀ n ∈ N, ∀ t0 ≤ · · · ≤ tn ∈ R+, ∃M ∈ (0,+∞) : ∀ B1, . . . , Bn−1 ∈ 𝒜(ℛ),

sup
u,v∈S (ℛ): ‖u‖H=‖v‖H=1

|β
t0,t1,...,tn
µ; B1,...,Bn−1

(u, v)| ≤ M‖u‖H‖v‖H . (6)

Пусть aJ(𝒜Cyl) – линейное подпространство пространства мер a(𝒜Cyl), удовлетворяющих условию J, гдe J ∈
∈ {S , Bc}; aS ,Bc(𝒜Cyl) = aS (𝒜Cyl)

⋂︀
aBc(𝒜Cyl).

Лемма 1. Если µ ∈ aBc(𝒜Cyl), то функция (5) допускает единственное продолжение до ограниченной полутора-
линейной формы на пространстве H:

(g, Ut0, ... ,tn
µ; B1, ... ,Bn−1

f ) = βt0, t1, ..., tn
µ; B1, ..., Bn−1

( f , g), f , g ∈ H.

Доказательство. Функция (5) продолжается до полуторалинейной формы на линейной оболочке индикатор-
ных функций кольцаℛ в силу требования полуторалинейности. Полученная полуторалинейная форма является
непрерывной относительно нормы ‖ · ‖L2(E) в силу непрерывности по базе (6) меры µ. Так как span(χB, B ∈ ℛ) –
плотное в пространстве H линейное многообразие, то непрерывная на нем полуторалинейная форма однознач-
но продолжается по непрерывности до непрерывной полуторалинейной формы на пространстве H.

Теорема 2 (см. [8]). На линейном пространстве aS ,Bc(𝒜Cyl) существует линейное отображениеV : aS ,Bc(𝒜Cyl)→
→ℳm(R+, B(H)), определяемое условиями

∀ t > 0 (χB1 , (V(µ))(t)χB0 )H = µ(A 0, t
B0,B1

), ∀ B0, B1 ∈ ℛ; (7)

(χB0 , (V(µ))(0)χB0 )H = µ(A 0
B0

) ∀ B0 ∈ ℛ. (8)

В линейном пространстве aS ,Bc(𝒜cyl) выделим класс мер, сужение на который линейного отображения V
инъективно.

Определение 3 (см. [8]). Мера µ ∈ aBc(𝒜𝒞yl) называется марковской, если

U tm, ..., tn−1, tn
µ; Bm+1, ..., Bn−1

PBm U t0, ... tm−1, tm
µ; B1, ... Bm−1

= U t0, ... tn
µ; B1, ...Bn−1

(9)

∀ t0, . . . tn : 0 ≤ t0 < . . . < tm < . . . tn; ∀ B1, . . . Bn−1 ∈ ℛ.
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Определение 4 (см. [8]). Марковская мера µ ∈ aBc,M(𝒜𝒞yl) называется строго марковской, если

U tm, ..., tn−1, tn
µ; Bm+1, ..., Bn−1

PBm U t0, ... tm−1, tm
µ; B1, ... Bm−1

= U t0, ... tn
µ; B1, ...Bn−1

(10)

∀ t0, . . . tn : 0 ≤ t0 < . . . < tm < . . . tn; ∀ B1, . . . Bn−1 ∈ 𝒜ℛ.

Символом aJ,M(𝒜Cyl) обозначим множество мер, удовлетворяющих условию J и условию (9). Заметим, что
если µ ∈ aBc,M(𝒜Cyl), то мера µ на полуалгебре множеств Cyl может быть восстановлена по своему сужению на
класс множеств Cyl2 = {C

0,t
B0,B, t ≥ 0, B0, B ∈ ℛ}.

Теорема 3 (см. [8]). Образ aΛ(𝒜Cyl) отображения Λ совпадает с множеством aBc,S ,M(𝒜Cyl).
Отображение

V : aBc,S ,M(𝒜Cyl)→ℳm(R+, B(H))

определенное условиями (7), (8), является обратным к биективному отображению

Λ : ℳm(R+, B(H))→ aBc,S ,M(𝒜Cyl).

3. ДВУХПАРАМЕТРИЧЕСКИЕ ЭВОЛЮЦИОННЫЕ СЕМЕЙСТВА ОПЕРАТОРОВ И ЗАДАЧА КОШИ
С ПЕРЕМЕННЫМ ОПЕРАТОРОМ

Определение 5 (см. [1, 2]). Двухпараметрическое семейство U(t, s), 0 ≤ s ≤ t < +∞, ограниченных линейных
операторов в гильбертовом пространстве H называется эволюционным, если выполнены следующие условия:

1) U(t, t) = I при всех t ≥ 0,
2) отображение U : R2

≤ → B(H) непрерывно в сильной операторной топологии на множестве R2
≤ = {(s, t) ∈

∈ R2 : 0 ≤ s ≤ t},
3) выполняется эволюционное свойство U(t, τ)U(τ, s) = U(t, s) ∀ s, τ, t : 0 ≤ s ≤ τ ≤ t < ∞.
Нас будут интересовать эволюционные семейства, удовлетаоряющие следующим предположениям.
Предположение 0. Предположим, что существует плотное в пространстве H линейное многообразие D такое,

что существует предел

lim
h→+0

(︂
1
h

(U(t + h, s) −U(t, s))u
)︂
= A(t, s)u (11)

для каждого (s, t) ∈ R2
≤ и каждого u ∈ D.

Согласно свойству 3) эволюционного семействаU(t+h, s)−U(t, s) = (U(t+h, t)−I)U(t, s), поэтому условие (11)
эквивалентно существованию производной

lim
h→+0

(︂
1
h

(U(t + h, t) − I)U(t, s)u
)︂
= A(t)U(t, s)u, t ≥ s ≥ 0.

В частности, d
dtU(t, s)u|s=t = A(t)u ∀ u ∈ D при всех t ≥ 0 и A(t, s) = A(t)U(t, s), (t, s) ∈ R2

≤.
Сформулируем предположения 1–5 об операторнозначной функции A(s), s ≥ 0, достаточные (как будет

показано в теореме 4) для того, чтобы семейство переменных генераторов A(s), s ≥ 0, однозначно определяло
эволюционное семейство, удовлетворяющее условиям 1)–3) и предположению 0.

Предположение 1. Предположим, что существует плотное в пространстве H линейное многообразие D такое,
что при каждом t ≥ 0 линейный оператор A(t)u, u ∈ D имеет самосопряженное замыкание.

Предположение 2. Предположим, что замыкание оператора A(0) имеет обратный (A(0))−1 : H → D.
Из предположений 1, 2 следует, что при всех t > 0 оператор A(t)(A(0))−1 всюду определен, замкнут и, следо-

вательно, ограничен [1]. Замкнутость оператора A(0) позволяет наделить подпространство D нормой графика
оператора A(0), превращающей линейное многообразие D в банахово пространство.

Предположение 3. Пусть общая существенная область определения D генераторов A(s), s ∈ [0,+∞), инва-
риантна относительно полугруппы eA(s)t, t ≥ 0, при каждом s ∈ [0,+∞). Пусть семейство генераторов A(s),
s ∈ [0,+∞), равномерно полуограничено сверху.

Предположение 4. Существует число B ≥ 0 такое, что для любого u ∈ D

e−B|t−s|‖A(s)u‖H ≤ ‖A(t)u‖H ≤ eB|t−s|‖A(s)u‖H ∀ t, s ≥ 0.

Заметим, что из предположений 2, 4 следует, что при каждом t ≥ 0 оператор A(t) ограниченный обратный.
На линейном пространстве D введем семейство эквивалентных в силу предположения 4 норм ‖u‖Dt = ‖Atu‖H,
u ∈ D, t ≥ 0, и положим ‖u‖D0 ≡ ‖u‖D.
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Предположение 5. Пусть оператор-функцияA : [0,+∞)×D→ H является равномерно непрерывной в смысле
выполнения следующего условия (сильно равномерно непрерывна по Гёльдеру на множестве D):

∃ L, a > 0 : ∀ u ∈ D ∀ t, s > 0, ‖(A(t) −A(s))u‖H ≤ L|t − s|a‖u‖Ds . (12)

Примером удовлетворяющей предположениям 1–5 оператор-функции может служить оператор-функция
со значениями в множестве действующих в пространстве L2(R) эллиптических дифференциальных операторов
второго порядка в дивергентной форме с гладко зависящими от временного параметра и пространственных
координат коэффициентами, квадратичные формы которых определены на пространстве Соболева W1

2 (R) и
равномерно ограничены снизу и сверху квадратичной формой скалярного произведния пространства Rd.

Лемма 2. Пусть выполнены предположения 1–4. Тогда существует число M > 0 такое, что при любых t ≥ 0,
s ≥ 0, σ > 0 и любом u ∈ D выпонены неравенствы

‖eA(s)tu‖Ds ≤ eMt‖u‖Ds ; ‖eA(s)tu‖Dσ ≤ eM(t+|s−σ|)‖u‖Dσ . (13)

Доказательство. Пусть s ≥ 0. Так как u ∈ D, то в силу предположения 1 u ∈ D(A(s)). Из равномерной полуо-
граниченности сверху самосопряженных операторов A(s), s ≥ 0, следует существование такой не зависящей от
s постоянной m > 0, что ‖etA(s)u‖H ≤ emt‖u‖H и ‖etA(s)u‖D(A(s)) ≤ emt‖u‖D(A(s)) и первая оценка доказана (D(A(s)) –
гильбертово пространство, предствляющее собой пополнение линейного пространства D по норме ‖ · ‖D(s) гра-
фика самосопряженного замыкания оператора A(s)). Из предположений 1–4 следует, что при каждом σ ≥ 0
etA(s)u ∈ D ⊂ D(A(σ)) и при этом

‖etA(s)u‖D(A(σ)) ≤ eB|s−σ|‖etA(s)u‖D(A(s)) ≤ eB|s−σ|+mt‖u‖D(A(s)) ≤ e2B|s−σ|+mt‖u‖D(A(σ)).

Значит, оценка (13) выполняется с постоянной M = m + 2B.
В частности, из леммы 2 следует, что ‖eA(s)tu‖D ≤ eM(t+s)‖u‖D для любого u ∈ D и любых s, t ≥ 0.
Определение 6. Обобщенным решением задачи Коши

d
dt

u(t) = A(t)u(t), t ∈ (t0,+∞), (14)

u(t0 + 0) = u0, (15)

где 0 ≤ t0 < +∞, c удовлетворяющими предположению 1 переменными генераторами и с начальным условием
u0 ∈ H будем называть такую функцию u(t, t0, u0) ∈ C([t0,+∞),H), что при каждом v ∈ D справедливо равенство

(u(t, t0, u0) − u0, v) =

t∫︁
t0

(u(s, t0, u0),A(s)v)ds, t ∈ [t0,+∞). (16)

Лемма 3. Пусть выполнены предположения 1–5. Если обобщенное решение задачи Коши существует, то оно
единственно.

Доказательство. Предположим, что у задачи Коши существуют два различных обощенных решения
u(·, t0, u0), û(·, t0, u0). Тогда их разность w(·) принадлежит пространству C([t0,+∞),H) и в силу (16) удовлетворяет
равенству

(w(t), v) =

t∫︁
t0

(w(s),A(s)v)ds, t ∈ [t0,+∞),

при произвольном v ∈ D. Фиксируем произвольное v ∈ D. Тогда для неотрицательной функции zv(t) = |(w(t), v)|,

t ∈ [t0,+∞), справедливо условие zv(t0) = 0 и при любом T > 0 выпонено неравенство zv(t) ≤
t∫︀

t0
Azv(s)ds, где

A = sup
t∈[t0,T ]

‖A(t)v‖ < +∞ в силу предположения 4. Поэтому zv(t) = 0, t ∈ [t0,T ], в силу леммы Гронуолла.

Итак, (w(t), v) = 0 ∀ t ∈ [t0,+∞), v ∈ D.

Поскольку в силу условий предположения 1 линейное многообразие D оно плотно в пространстве H, то w(t) =
= 0 ∀ t ∈ [t0,T ).

Теорема 4. Пусть выполнены условия предположений 1–5. Тогда для любого t0 ≥ 0 и для любого u0 ∈ H задача
Коши (14), (15) имеет единственное обобшенное решение

u(t, t0, u0) = UA(t, t0)u0, t ∈ [t0,+∞). (17)
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При этом двухпараметрическое семейство орператоров UA(t, s), t ≥ s ≥ 0, в (17) может быть определено из
условия

∀ u ∈ H, ∀T > t0 lim
|σ([s,t])|→0

sup
t0≤s≤t≤T

‖UA(t, s)u − eA(ξn−1)(ξn−ξn−1) ∘ . . . ∘ eA(ξ0)(ξ1−ξ0)u‖H = 0, (18)

где ξ0, . . . , ξn – точки разбиения σ([s, t]) отрезка [s, t] и |σ([s, t])| = max{|ξ1 − ξ0|, . . . , |ξn − ξn−1|} – мелкость этого
разбиения.

Доказательство. Пусть u ∈ D, тогда esA(t)u ∈ D для всех t ≥ 0, s ≥ 0.
Пусть 0 ≤ t0 ≤ s < ξ < t ≤ T < +∞, тогда

‖eA(ξ)(t−ξ)eA(s)(ξ−s)u − eA(s)(t−s)u‖H = ‖(eA(ξ)(t−ξ) − eA(s)(t−ξ))eA(s)(ξ−s)u‖.

Пусть u, v ∈ D, и 0 ≤ t0 ≤ s < τ < t ≤ T < +∞. Если f (t) = eA(s)(t−t0)v, g(t) = eA(τ)(t−t0)u при всех t ∈ [t0,T ], то

d
dt

(g(t) − f (t)) = A(τ)g(t) −A(s) f (t) = (A(τ) −A(s))g(t) +A(s)(g(t) − f (t)), t ∈ [t0,T ].

Следовательно, при всех t ∈ [t0,T ] имеем

g(t) − f (t) = eA(s)(t−t0)(u − v) +

t∫︁
t0

eA(s)(t−ξ)(A(τ) −A(s))eA(τ)(ξ−t0)udξ.

Поэтому, согласно (12) и (13), для всех t ∈ [t0,T ] имеем

‖g(t) − f (t)‖H ≤ eM(t−t0)‖u − v‖H + L|τ − s|a
t∫︁

t0

eM(t−ξ)‖eA(τ)(ξ−t0)u‖Ds dξ ≤

≤ eM(t−t0)‖u − v‖H + Le2M(t−t0)|t − t0|1+a‖u‖Dt0
. (19)

Пусть τ = {ξ0, . . . , ξN} – разбиение отрезка [t0,T ], т.e. t0 = ξ0 < . . . < ξN = T . Пусть u, v ∈ D. Определим
соответствующее разбиению τ семейство операторов UτA(t0, t), t ∈ [t0,T ], по следующему правилу. Определив
по числу t ≥ t0 величину ξk = max{ξ j ∈ {ξ0, . . . , ξN} : ξ j ≤ t}, а по числу s ∈ [t0, t] величину ξi = max{ξ j ∈ {ξ0, . . . , ξN} :
ξ j ≤ s} положим

UτA(t, s)u ≡ ϕτ(s, t, u) =

{︃
eA(ξk)(t−ξk)eA(ξk−1)(ξk−ξk−1) . . . eA(ξi)(ξi+1−s)u, ξi < ξk,

eA(ξi)(t−s)u, ξi = ξk.

В частности, для любого t ∈ [t0,T ] имеем

UτA(t, t0)u ≡ ϕτ(t0, t, u) =

{︃
eA(ξk)(t−ξk)eA(ξk−1)(ξk−ξk−1) . . . eA(ξ0)(ξ1−ξ0)u, ξ0 < ξk,

eA(ξ0)(t−s)u, ξk = ξ0.
(20)

В силу предположений 1, 3 и леммы 2 при каждом разбиении τ отрезка [t0,T ] двухпараметрическое семейство
операторов UτA(t, s), 0 ≤ s < t < +∞, допускает оценку по норме

‖UτA(t, s)u‖H ≤ eM(t−s)‖u‖H ∀ u ∈ H. (21)

Оценим разность eA(t0)(T−t0)u −Uτ(T, t0)v. Положим wk = eA(ξk−1)(ξk−ξk−1)wk−1, k = 1, . . . ,N, и w0 = v. Тогда

eA(t0)(T−t0)u −Uτ(T, t0)v = eA(ξ0)(ξN−ξ0)(u − v) + [eA(ξ0)(ξN−ξ2)eA(ξ0)(ξ2−ξ1) − eA(ξN−1)(ξN−ξN−1) ∘ . . . ∘ eA(ξ1)(ξ2−ξ1)]w1 =

= eA(ξ0)(ξN−ξ0)(u − v) + eA(ξ0)(ξN−ξ2) (︀eA(ξ0)(ξ2−ξ1) − eA(ξ1)(ξ2−ξ1))︀w1+

+
(︀
eA(ξ0)(ξN−ξ3)eA(ξ0)(ξ3−ξ2) − eA(ξN−1)(ξN−ξN−1) ∘ . . . ∘ eA(ξ2)(ξ3−ξ2))︀w2 = . . . =

= eA(t0)(T−t0)(u − v) +
N−1∑︁
k=1

eA(ξ0)(ξN−ξk+1)[eA(ξ0)(ξk+1−ξk) − eA(ξk)(ξk+1−ξk)]wk.
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Следовательно, согласно (19), (12) и (13), справедливо неравенство

‖eA(t0)(T−t0)u −UτA(T, t0)v‖H ≤ eM(T−t0)‖u − v‖H +
N−1∑︁
k=1

e2M(T−ξk+1)L|ξk − ξ0|
a‖wk‖Dt0

|ξk+1 − ξk |.

Поскольку в силу (13) ‖wk‖Dt0
≤ eM(T−t0)‖v‖Dt0

при k = 1, . . . ,N и так как |ξk − ξ0|
a ≤ |T − t0|a при всех k = 1, . . . ,N, то

‖eA(t0)(T−t0)u −UτA(T, t0)v‖H ≤ e2M(T−t0)[‖u − v‖H + L(T − t0)a+1‖v‖Dt0
]. (22)

Пусть τ′ = {s1, . . . , sN′ } – продолжение разбиения τ отрезка [t0,T ]. Для расширения τ′ разбиения τ однознач-
но определен упорядоченный по возрастанию набор натуральных чисел { ji, i = 1, . . . ,N} такой, что ξi = s ji ,
i = 1, . . . ,N.

Пустьϕτ(t0, t, u0), ϕτ′ (t0, t, u0), t ∈ [t0,T ],– вектор-функции, определенные по разбиениям τ, τ′ соответственно
и по начальному условию u0 с помощью равенства (20). Тогда согласно (22) справедлива следующая оценка:

‖Uτ
′

A(ξ1, t0)u0 −U
τ
A(ξ1, t0)u0‖H ≤ Le2M(ξ1−t0)(ξ1 − t0)a+1‖u0‖Dt0

.

Следовательно, согласно (22),

‖ϕτ′ (t0, ξ2, u0) − ϕτ(t0, ξ2, u0)‖H = ‖Uτ
′

A(ξ2, ξ1,ϕτ′ (t0, ξ1, u0)) − eA(ξ1)(ξ2−ξ1)
ϕτ(t0, ξ1, u0)‖H ≤

≤ e2M(ξ2−ξ1)[‖ϕτ′ (t0, ξ1, u0) − ϕτ(t0, ξ1, u0)‖H + L(ξ2 − ξ1)1+a‖ϕτ′ (t0, t1, u0)‖Dξ1 ] ≤

≤ e2M(ξ2−ξ1)[LeM(ξ1−ξ0)(ξ1 − ξ0)a+1‖u0‖Dξ0 + L(ξ2 − ξ1)1+aeM1(ξ1−ξ0)‖u0‖Dξ0 ] =

= Le2M(ξ2−ξ0)[(ξ1 − ξ0)a+1 + (ξ2 − ξ1)1+a]‖u0‖Dξ0 . (23)

Аналогично, в силу (22), и используя (13), получим

‖ϕτ′ (t0, ξ3, u0) − ϕτ(t0, ξ3, u0)‖H = ‖Uτ
′

A(ξ3, ξ2,ϕτ′ (t0, ξ2, u0)) − eA(ξ2)(ξ3−ξ2)
ϕτ(t0, ξ2, u0)‖H ≤

≤ e2M(ξ3−ξ2)[‖ϕτ′ (t0, ξ2, u0) − ϕτ(t0, ξ2, u0)‖H + L(ξ3 − ξ2)1+a‖ϕτ′ (t0, ξ2, u0)‖Dξ2 ].

С учетом оценки (23) это дает

‖ϕτ′ (t0, ξ3, u0) − ϕτ(t0, ξ3, u0)‖H ≤ e2M(ξ3−ξ2)[Le2M(ξ2−ξ0)[(ξ1 − ξ0)a+1 + (ξ2 − ξ1)1+a]‖u0‖Dξ0+

+L(ξ3 − ξ2)1+a‖ϕτ′ (t0, ξ2, u0)‖Dξ2 ] ≤ Le2M(ξ3−ξ0)[(ξ1 − ξ0)a+1 + (ξ2 − ξ1)1+a + (ξ3 − ξ2)1+a]‖u0‖Dξ0 .

Применяя метод индукции, получаем, что для любых s ∈ [t0,T ] справедлива оценка

‖ϕτ′ (t0, s, u0) − ϕτ(t0, s, u0)‖H ≤ Le2M(T−t0)(
N∑︁

k=1

(ξk − ξk+1)1+a)‖u0‖Dt0
.

Значит, если мелкость |τ| разбиения τ достаточно мала, то для всякого продолжения τ′ разбиения τ справедлива
оценка

sup
t∈[t0,T ]

‖ϕτ′ (t0, t, u0) − ϕτ(t0, t, u0)‖H ≤ Le2M(T−t0)(T − t0)|τ|a‖u0‖Dt0
≤ Le2MT (T − t0)|τ|a‖u0‖D.

Таким образом, при стремлении к нулю мелкости разбиения промежутка [t0,T ] соответствующая последо-
вательность интегральных композиций (20) сходится в сильной операторной топологии равномерно по (t0, t) ∈
∈ [0,T ]× [0,T ]

⋂︀
R2
≤ к пределу U(t, t0)u0, (t0, t) ∈ [0,T ]× [0,T ]

⋂︀
R2
≤, не зависящему от выбора последовательности

разбиений. При этом ‖U(t, t0)‖B(H) ≤ eM(t−t0) ∀ t ≥ t0 в силу (21).
При фиксированном разбиении τ = {ξ0, . . . , ξN} отрезка [t0,T ] оператор-функция UτA(t0, t), t ∈ [t0,T ], опреде-

ленная как композиция полугрупп (20), удовлетворяет интегральному равенству

UτA(t0, t)u0 = u0 +

t∫︁
t0

Aτ(s)UτA(t0, s)u0ds, t ∈ [t0,T ],

гдe

Aτ(s) =
N∑︁

k=1

χ[ξk−1,ξk)(s)A(ξk−1), s ∈ [t0,T ]. (24)
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При этом в силу предположения 3 на любом промежутке [ξk, ξk+1] разбиения τ имеет место оценка

‖UτA(t0, tk+1)u0‖Dξk ≤ em(ξk+1−ξk)‖UτA(t0, tk)u0‖Dξk

и, согласно предположению 4 имеем

‖UτA(t0, tk+1)u0‖Dξk+1
≤ eB(ξk+1−ξk)‖UτA(t0, tk+1)u0‖Dξk .

Следовательно,
‖UA

τ(t, t0)u‖Dt0
≤ eM(t−t0)‖u‖Dt0

∀ u ∈ D, ∀ τ([t0,T ]), ∀ t ∈ [t0,T ]. (25)

Из установленной выше сходимости интегральных композиций операторных семейств с кусочно-
постоянными генераторами следует, что существует не зависящий от выбора римановой последовательности
разбиений предел U(·, t0)u0. Докажем, что если u0 ∈ D, то предел U(·, t0)u0 является решением задачи Коши (14),
(15).

При любом разбиении τ кусочно-полугрупповая операторнозначная функция (20) по построению являет-
ся двухпараметрическим эволюционным семейством операторов. В силу равномерности сходимости UτA при
|τ| → 0 в сильной операторной топологии предельная функция U непрерывна в сильной операторной тополо-
гии на множестве R2

≤ и удовлетворяет эволюционным условиям 1) и 3) определения 5.
Пусть u0 ∈ D и пусть τ – разбиение отрезка [t0,T ] точками ξ0, ξ1, . . . , ξN . Тогда по определению оператор-

функции UτA(t0, t), t ∈ [t0,T ], справедливо равенство

ϕτ(t0, t, u0) = u0 +

t∫︁
t0

Aτ(s)ϕτ(t0, s, u0)ds, t ∈ [t0,T ],

где Aτ – ступенчатая генератор-функция (24). Значит, для каждого v ∈ D справедливо равенство

(ϕτ(t0, t, u0) − u0, v) =

t∫︁
t0

(ϕτ(t0, s, u0),Aτ(s)v)ds, t ∈ [t0,T ]. (26)

Заметим, что
lim
|τ|→0

sup
s∈[t0,T ]

‖Aτ(s)v −A(s)v‖H = 0

в силу предположения 5 о липшицевости функции A. Поэтому переходя к пределу при |τ| → 0 в равенстве (26)
получаем, что функция U(t, s)u0 является обобщенным решением задачи Коши на промежутке [t0,T ]. При этом
поскольку для каждого разбиения τ операторнозначная функция Uτ удовлетворяет оценке роста (25), то той же
оценке удовлетворяет и предельное двухпараметрическое семейство U.

Пусть теперь u0 ∈ H. Тогда если последовательность {u0k} : N → D удовлетворяет условию lim
k→∞
‖u0k −

− u0‖H = 0, то последовательность {U(t0, ·)u0k} сходится равномерно на [t0,T ] к функции U(t0, ·)u0 поскольку
sup

t∈[t0,T ]
‖U(t0, t)‖B(H) ≤ eM(T−t0 ). При этом предельная функция удовлетворяет интегральному равенству (16) и, сле-

довательно, является обобщенным решением задачи Коши, единственность которого доказана в лемме 3. Та-
ким образом, U(t, s) = UA(t, s), (t, s) ∈ R2

≤.

4. ВОЗМУЩЕНИЯ ЭВОЛЮЦИОННЫХ СЕМЕЙСТВ

Рассмотрим задачу Коши для возмущенного уравнения

d
dt

u(t) = A(t)u(t) + f (t), t ∈ (t0,T ), (27)

с начальным условием (15). Решением задачи Коши называется функция u(t, t0, u0) ∈ C([t0,T ),H), которая при
каждом v ∈ D удовлетворяет равенству

(u(t, t0, u0) − u0, v) =

t∫︁
t0

(u(s, t0, u0),A(s)v)ds +

t∫︁
t0

( f (s), v)ds, t ∈ [0,T ). (28)
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Пусть L∞(R+,H) – банахово пространство измеримых по Бохнеру отображений полуоси R+ в гильбертово
пространство H = L2(E), наделенное нормой L∞(R+,H), т.е. пополнение по норме L∞(R+,H) пространства из-
меримых ступенчатых отображений R+ → H.

Лемма 4. Пусть выполнены условия предположений 1–5. Пусть f ∈ L∞(R+,H). Пусть t0 ∈ R+ и u0 ∈ H. Тогда
для всех t ≥ t0 задача Коши для возмущенного уравнения (27) с начальным условием (15) существует, единственно и
задается формулой Дюамеля

u(t) = UA(t, t0)u0 +

t∫︁
t0

UA(t, s) f (s)ds. (29)

Доказательство. Подставив (29) в (28) поменяем порядок интегрировавния в

t∫︁
t0

s∫︁
t0

(UA(s, ξ) f (ξ),A(s)v)dξds

и, учитывая, что
t∫︁
ξ

(UA(s, ξ) f (ξ),A(s)v)ds = UA(t, ξ) f (ξ) − f (ξ) ∀ ξ ∈ [t0, t],

получим, что функция (29) удовлетворяет условию (28).
Исследуем возмущения уравнений для эволюционных семейств добавлением нестационарного возмушения

однопараметрическим семейством V(t), t ≥ 0, ограниченных линейных операторов умножения на измеримую
функцию V(t), t ≥ 0.

Лемма 5. Пусть выполнены условия предположений 1–5. Пусть вещественнозначная функция V ∈ C1(R+, L∞(E))
такова, что ‖V(t)‖L∞(E) < (‖(A(t))−1‖B(H))−1 при всех t ≥ 0 и оператор V(s) умножения на функцию V(s) удовлетво-
ряет условию V(s)D ⊂ D при всех s ≥ 0. Тогда семейство операторов A(s) +V(s), s ≥ 0, удовлетворяет условиям
прелположений 1–5 и порождает эволюционное семейство операторов UA+V(t, s), (t, s) ∈ R2

≤.При этом для эволю-
ционного семейства UA+V имеет место кусочно-полугрупповая аппроксимация (18).

Для доказательства леммы 5 достаточно лишь проверить, что семейство операторов A(s) +V(s), s ≥ 0, удо-
влетворяет условиям предположений 1–5 с тем же плотным в H линейным подпространством D, что и для се-
мейства операторов A(s) +V(s), s ≥ 0.

Рассмотрим задачу Коши для возмущенного уравнения

d
dt

u(t) = A(t)u(t) +V(t)u(t), t ∈ (t0,T ), (30)

с начальным условием (15).
Лемма 6. Пусть двухпараметрическое эволюционное семейство операторов UA(t, s), (t, s) ∈ R2

≤ порождается
задачей Коши (14), (15) c семейством операторов A(s), s ≥ 0, удовлетворяющим условиям предположений 1–5.
Пусть V ∈ L∞(R+, L∞(E)) и V(s), s ≥ 0, – семейство операторов умножения на функцию V(s) ∈ L∞(E), s ≥ 0. Тогда
задача Коши (30), (15) порождает двухпараметрическое эволюционное семейство операторовUA+V(t, s), (t, s) ∈ R2

≤.
Доказательство. Решение задачи (30), (15) будем искать в виде (29), где f – неизвестная функция из про-

странства L∞(R+,H).
Функция (29) является решением задачи Коши (30) тогда и только тогда, когда

f (t) = V(t)UA(t, t0)u0 +V(t)

t∫︁
t0

UA(t, s) f (s)ds, t ∈ [t0,T ]. (31)

Заметим, что если f ∈ L∞(R+,H), то тогда
t∫︀

t0
UA(t, s) f (s)ds ∈ C([t0,T ],H) и

‖

·∫︁
t0

UA(·, s) f (s)ds‖C([t0,T ],H) ≤ (T − t0)eM(T−t0)‖ f ‖L∞([t0,T ],H).
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Значит, функция V(t)
t∫︀

t0
UA(t, s) f (s)ds, t ∈ [t0,T ], принадлежит пространству L∞([t0,T ],H) и

‖V(·)

·∫︁
t0

UA(·, s) f (s)ds‖L∞([t0,T ],H) ≤ (T − t0)eM(T−t0)‖V‖L∞(R+,L∞(E))‖ f ‖L∞([t0,T ],H).

В силу условия V ∈ L∞(R+, L∞(E)) и оценки ‖U(t, t0)‖B(H) ≤ eM(t−t0) существует такое δ > 0, не зависящее от u0 и от
t0, что норма оператора

Kδ : f (t)→ V(t)

t∫︁
t0

UA(t, s) f (s)ds, t ∈ [t0, t0 + δ],

в пространстве L∞([t0, t0 + δ],H) меньше единицы. Поэтому уравнение (31) имеет единственное решение

f (t) = (
∞∑︁
j=0

K j
δ
)(V(t)UA(t, t0)u0), t ∈ [t0, t0 + δ], (32)

на отрезке [t0, t0 +δ] из пространства L∞([t0, t0 +δ],H). Значит, задача Коши (30), (15) имеет единственное реше-
ние, задаваемое равенством (29) c функцией (32).

В точке t0 + δ может быть снова поставлена задача Коши для уравнения (30) с начальным условием
u(t0 + δ), имеющая единственное решение на отрезке [t0 + δ, t0 + 2δ], и так далее. Следовательно, задача Ко-
ши (30), (15) имеет единственное решение и задает двухпараметрическое эволюционное семейство операторов
UA+V(t, s), (t, s) ∈ R2

≤.

5. ЭВОЛЮЦИОННЫЕ СЕМЕЙСТВА И ЦИЛИНДРИЧЕСКИЕ МЕРЫ

Отображение Λ, определенное в разделе 2, может быть расширено на множество ℳm(R2
≤, B(H)) двухпара-

метрических функций U(t, s), 0 ≤ s ≤ t < +∞, со значениями в пространстве B(H) и удовлетворяющих условию
U(t, t) ∈ 𝒜m(H), t ≥ 0. Построим биекцию между пространствомℳm(R2

≤, B(H)) и множеством a(𝒜Bc,M
𝒞yl ) марков-

ских непрерывных по базе конечно-аддитивных комплекснозначных мер, заданных на измеримом простран-
стве (ℳ+(E), 𝒜𝒞yl) траекторий в пространстве E:

Λ :ℳm(R2
≤, B(H))𝒜m → a(𝒜𝒞yl), Λ[U] = µU, ImΛ = aBc,M(𝒜𝒞yl).

Как и в формуле (2), всякому двухпараметрическому эволюционному семейству U(t, s), 0 ≤ s ≤ t < +∞,
отображениеΛ сопоставляет цилиндрическую меру µU такую, что для любого цилиндрического множества Ct

B,
обладающего базой, содержащей только множества из кольца ℛ, выполняется равенство

µ
U(Ct

B) = (χBn ,U(tn, tn−1)PBn−1 . . .PB1U(t1, t0)χB0 ), (33)

n ∈ N, Bi ∈ ℛ, ∀ i = 0, . . . , n.

Для n = 0 и произвольного t0 ⩾ 0, принимая во внимание, что U(t0, t0) ∈ 𝒜m имеет вид U(t0, t0)(∙) = ft0 (x)(∙),
где ft0 ∈ L∞(E, ℛ, λ, C), положим

µU(Ct0
B ) =

⎧⎪⎨⎪⎩
(χB, U(t0, t0)χB) =

∫︀
B

ft0 (x) dλ(x), B ∈ ℛ,

M0 −
∫︀

E∖B
ft0 (x) dλ(x), B ∈ 𝒜(ℛ), B /∈ ℛ,

(34)

где константа M0 = µ
U(ℳ(E)), как и ранее в разд. 2, может быть выбрана произвольно.

Также, как и в работе [8], доказывается, что условия (33) и (34) однозначно определяют цилиндрическую
меру µU на алгебре 𝒜Cyl, а отображение Λ : ℳm(R2

≤, B(H)) → a(𝒜𝒞yl) инъективно. Также устанавливается, что
для любого U ∈ ℳm(R2

≤, B(H)) мера µU непрерывна по базе и является марковской.
Как доказано в [11], отображение Λ обратимо и обратное отображение V всякой марковской непрерывной

по базе цилиндрической мере µ ∈ a(𝒜Bc,M
𝒞yl ) сопоставляет двухпараметрическое эволюционное семейство Uµ

посредством равенств
∀ t1 > t0 ≥ 0 (χB1 , (V(µ))(t1, t0)χB0 )H = µ(C

t0, t1
B0,B1

) ∀ B0, B1 ∈ ℛ; (35)
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∀ t0 ≥ 0 (χB0 , (V(µ))(t0)χB0 )H = µ(C
t0
B0

) ∀ B0 ∈ ℛ.

Теорема 5. Двухпараметрическое семейство Uµ(t0, t), 0 ≤ t0 ≤ t < +∞, операторов удовлетворяет эволюционно-
му свойству 3) определения 1

Uµ(t2, t1)Uµ(t1, t0) = Uµ(t2, t0) ∀ t2 ≥ t1 ≥ t0 ≥ 0

тогда и только тогда, когда соответствующая цилиндрическая мера µ ∈ a(𝒜Bc,M
𝒞yl ) удовлетворяет условию сильной

марковости.
Доказательство. Докажем, что если мера µ ∈ a(𝒜Bc,M

𝒞yl ) является строго марковской, то для оператор-функции
Uµ ∈ ℳm(R2

≤, B(H)) выполняется эволюционное свойство 3). Согласно равенству (35) для любых t2 ≥ t0 ≥ 0 и
любых B2, B0 ∈ ℛ имеем (Uµ(t2, t0)χB2 , χB0 ) = µ(Ct0,t2

B0,B2
). Поскольку Ct0,t2

B0,B2
= Ct0,t1,t2

B0,E,B2
при всех t1 ∈ [t0, t2], то

(Uµ(t2, t0)χB2 , χB0 ) = µ(Ct0,t1,t2
B0,E,B2

) ∀ t1 ∈ [t0, t2].

Поскольку мера µ является строго марковской, то Ut1,t2
µ PB1U

t0,t1
µ = Ut0,t1,t2

µ; B1
при любом B1 ∈ 𝒜R. Следовательно,

для любых B0, B2 ∈ ℛ справедлива цепочка равенств

(Uµ(t1, t0)Uµ(t2, t1)χB2 , χB0 ) = (Ut0,t1,t2
µ;E χB2 , χB0 ) = µ(Ct0,t1,t2

B0,E,B2
) = (Uµ(t2, t0)χB2 , χB0 ),

откуда следует выполнение эволюционного условия 3).
Докажем, что если µ ∈ a(𝒜Bc,M

𝒞yl ) и функция Uµ = V(µ) удовлетворяет условию 3), то мера µ является строго
марковской. Так как мера µ марковская, то выполняется условие (9). Следовательно, если при некотором n ∈ N
множества B1, . . . , Bn−1 лежат в кольце ℛ, то для любых tn ≥ tn−1 ≥ . . . ≥ t0 ≥ 0 выполняется равенство

Ut0,t1,...,tn−1,tn
µ; B1,...,Bn−1

= Utn−1,tn
µ PBn−1U

tn−2,tn−1
µ PBn−2 . . .U

t1,t2
µ PB1U

t0,t1
µ .

Следовательно, равенство (10) выполнено при условии, что все множества B1, . . . , Bn−1 лежат в кольце ℛ.
Предположим, что при некотором n ∈ N все множества B1, . . . , Bn−1 лежат в кольцеℛ, за исключением одного

из них, имеющего номер j ∈ 1, . . . , n − 1. Тогда для этого номера j ∈ 1, . . . , n выполняется, что B j ∈ 𝒜R и B j /∈ ℛ.
Потому B⊥j = E∖B j ∈ ℛ и PB j = I −PB⊥j . Следовательно,

U
t0,t1,...,t j,...,tn−1,tn
µ; B1,...,Bbot

j ,...,Bn−1
= Utn−1,tn

µ PBn−1 . . .U
t j+1,t j
µ PB⊥j U

t j,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ .

U
t0,t1,...,t j−1,t j+1...,tn−1,tn
µ; B1,...,B j−1,B j+1,...,Bn−1

= Utn−1,tn
µ PBn−1 . . .U

t j+1,t j+2
µ PB j+1U

t j−1,t j+1
µ PB j−1U

t j−2,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ .

Поскольку функция Uµ удовлетворяет условию эволюционности 3), верно равенство

U
t j−1,t j+1
µ = U

t j,t j+1
µ U

t j−1,t j
µ = U

t j,t j+1
µ (PB j +PB⊥j )Ut j−1,t j

µ . (36)

Значит, для любых B,Bn ∈ ℛ

(U t0,t1,...,t j,...,tn−1,tn
µ; B1,...,B j,...,Bn−1

χBn , B0) = µ(C t0,...,t j,...,tn
B0,...,B j,...,Bn

) = µ(C t0,...,t j,...,tn
B0,...,E∖B⊥j ,...,Bn

) =

= µ(C t0,...,t j,...,tn
B0,...,E,...,Bn

) − µ(C t0,...,t j,...,tn
B0,...,B j,...,Bn

) = (U t0,t1,...,t j−1,t j+1...,tn−1,tn
µ; B1,...,B j−1,B j+1,...,Bn−1

χBn , B0) − (U t0,t1,...,t j,...,tn−1,tn
µ; B1,...,Bbot

j ,...,Bn−1
χBn , B0) =

(Utn−1,tn
µ PBn−1 . . .U

t j+1,t j+2
µ PB j+1U

t j−1,t j+1
µ PB j−1U

t j−2,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ χBn , B0)−

−(Utn−1,tn
µ PBn−1 . . .U

t j+1,t j
µ PB⊥j U

t j,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ χBn , B0)

С учетом равенства (36) получаем, что

(U t0,t1,...,t j,...,tn−1,tn
µ; B1,...,B j,...,Bn−1

χBn , B0) = (Utn−1,tn
µ PBn−1 . . .U

t j+1,t j
µ PB jU

t j,t j−1
µ . . .Ut1,t2

µ PB1U
t0,t1
µ χBn , B0),

что в силу произвольности B0, Bn ∈ ℛ означает, что равенство (10) выполнено при условии, что все множе-
ства B1, . . . , Bn−1 за исключением, быть может, одного лежат в кольце ℛ. С помощью математической индукции
несложно установить, что равенство (10) выполняется при произвольных B1, . . . , Bn−1 ∈ 𝒜R.

Двухпараметрическое эволюционное семейство Uµ(t, t0), 0 ≤ t0 ≤ t < +∞, задает операторнозначную функ-
цию Fµ(t) = Uµ(t, 0), t ≥ 0, тогда и только тогда, когда соответствующая цилиндрическая мера µ ∈ a(𝒜Bc,M

𝒞yl )
удовлетворяет условию стационарности. Операторнозначная функция Fµ является однопараметрической по-
лугруппой операторов тогда и только тогда, когда мера µ ∈ a(𝒜Bc,M,S

𝒞yl ) является строго марковоской.
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6. ЭВОЛЮЦИОННЫЕ СЕМЕЙСТВА И КОНТИНУАЛЬНЫЕ ИНТЕГРАЛЫ

Корректная разрешимость задачи Коши (14), (15) установлена при условиях предположений 1–5 на се-
мейство переменных генераторов. Корректная разрешимость возмущенной задачи установлена при различных
предположениях о возмущениях источника f (·) и потенциала V(·). В соответствии с теоремой 5 двухпараметри-
ческие эволюционные семейства, порожденные невозмущенной задачей Коши (14), (15), определяют нестаци-
онарную строго марковскую непрерывную по базе цилиндрическую меру на пространстве траекторий со зна-
чениями в евклидовом пространстве. Для того чтобы получить представление двухпараметрического эволюци-
онного семейства, порожденного возмущенной задачей Коши (30), (15), с помощью континуального интеграла
от зависящего от возмущения функционала на траекториях по цилиндрической мере, определяемой невозму-
щенным эволюционным семейством, нам потребуется наложить достаточно ограничительные предположения
относительно оператор-функции, представляющей возмущение, а именно, условия, сформулированные в лем-
ме 5.

Лемма 7. Пусть A – самосопряженный оператор в пространстве H, полуограниченный сверху. Тогда для любого
t > 0 существует самосопряженный оператор Θt такой, что 0 ≤ Θt ≤ I, [Θt,A] = 0 и

etA = I + tAetΘtA. (37)

Доказательство. ПустьE(λ), λ ∈ R, – ортогональное разложение единичного оператора, задающее спектраль-
ное разложение самосопряженного оператора A. Тогда для каждого вектора u ∈ H определена монотонно воз-
растающая от нуля до числа ‖u‖2 функция Eu(λ) = (E(λ)u, u), λ ∈ R. При этом D(A) = {u ∈ H :

∫︀
R

(1 + λ2)dEu(λ) <

< +∞}, где интегрирование ведется в смысле Стилтьесса, (Au, u) =
∫︀
R
λdEu(λ),

(etAu, u) =
∫︁
R

etλdEu(λ)

для всех u ∈ D(A). Согласно теореме Лагранжа для каждого t > 0 существует непрерывная положительная и не
превосходящая единицу функция θt(λ), λ ∈ R, такая, что etλ − 1 = tλeθt(λ)tλ. Следовательно, при каждом t > 0
определен ограниченный неотрицательный самосопряженный оператор Θt =

∫︀
R
θt(λ)dE(λ), не превосходящий

единичного оператора, коммутирующий с оператором A и удовлетворяющий равенству (37).
Лемма 8. Пусть A – ограниченный сверху оператором MI, M > 0, самосопряженный оператор в пространстве

H и пусть u ∈ D(A). Тогда для любого ϵ > 0 существует Cϵ > 0 такое, что

‖(etA − I)Au‖H ≤ ϵ + |t|Cϵ‖Au‖H ∀ t ∈ (−1, 1).

Доказательство. Из условия u ∈ D(A) следует, что для каждого ϵ > 0 существует число rϵ > 0 такое, что∫︀
|λ|>rϵ

λ2dEu(λ) < ϵ
2

4 e−2M. Тогда для каждого t ∈ (−1, 1) имеем

‖(etA − I)Au‖2H =
∫︁
R

(etλ − 1)2
λ

2dEu(λ) ≤
∫︁
|λ|>rϵ

4e2M
λ

2dEu(λ) +
∫︁
|λ|≤rϵ

(etλ − 1)2
λ

2dEu(λ) ≤

≤ ϵ2 +

rϵ∫︁
−rϵ

(etrϵ − 1)2
λ

2dEu(λ) ≤ e2 + t2r2
ϵ e

2rϵ‖Au‖2H .

Отсюда следует утверждение леммы при Cϵ = rϵerϵ .
Из лемм 6, 7 получаем следствие
Следствие 1. Пусть A – ограниченный сверху оператором MI, M > 0, самосопряженный оператор в про-

странстве H и пусть u ∈ D(A). Тогда для любого ϵ > 0 существует Cϵ > 0 такое, что

‖(etA − I − tA)u‖H ≤ ϵ|t| + t2Cϵ‖Au‖H ∀ t ∈ (−1, 1).

Доказательство. Согласно лемме 7 для любого t > 0 существует самосопряженный оператор Θt такой, что
0 ≤ Θt ≤ I, [Θt,A] = 0 и выполняется равенство (37). Следовательно, для каждого t ∈ (−1, 1) имеем

‖(etA − I − tA)u‖H = ‖(etΘtA − I)tAu‖H ≤ ‖(etA − I)tAu‖H .
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Из леммы 8 получаем утверждение следствия.
Лемма 9. Пусть K – компактное в банаховом пространстве D подмножество семейства векторов {A(s)u, s ∈

∈ [t0,T ]}. Тогда для любого ϵ > 0 существует CK,ϵ > 0 такое, что

‖(etA − I − tA)u‖H ≤ ϵ|t| + t2CK,ϵ‖Au‖H ∀ u ∈ K, ∀ t ∈ (−1, 1).

Доказательство. Пусть ϵ > 0 и n ∈ N. Тогда существует конечная ϵ-сеть {v1, . . . , vm}множества K в пространстве
D. Для каждого i ∈ {1, . . . ,m} в силу следствия 1 существует Ci,ϵ > 0 такое, что

‖(etA − I − tA)vi‖H ≤ ϵ|t| + t2Ci,ϵ‖Au‖H ∀ t ∈ (−1, 1).

Пусть теперь u ∈ K и iu ∈ {1, . . . ,m} : ‖u − viu‖D ≤ ϵ. Тогда

‖(etA − I − tA)(viu − u)‖H ≤ ‖etA − I)(viu − u)‖H + ‖tA)(viu − u)‖H ≤ (eM(T−t0) + 1)‖viu − u‖H + t sup
s∈[t0,T ]

‖A(s)(viu − u)‖H =

= (eM(T−t0) + 1)‖viu − u‖H + teBT ‖viu − u‖D ≤
1
n
ϵeB(1 + eM(T−t0)).

Рассмотрим множество отображений отрезка [t0,T ] в пространство D

{{UτA+B(t, t0)u, t0 ≤ t ≤ T }, τ} (38)

при всевозможных разбиениях τ = {ξ0, . . . , ξN} отрезка [t0,T ].
Лемма 10. Пусть выполнены предположения 1–5. Пусть функция V(s), s ≥ 0, удовлетворяет условиям леммы 5.

Пусть u ∈ D. Тогда множество
M = {UτA+V(t, t0)u, t0 ≤ t ≤ T, τ}

компактно в пространстве D.
Доказательство. Так как операторнозначная функция A +V в силу леммы 5 удовлетворяет условиям пред-

положений 1–5, то для нее справедливо утверждение леммы 2 с некоторой константой MV > 0. Следователь-
но, для любого разбиения τ отрезка [t0,T ] векторнозначная функция UτA+V(t, t0)u удовлетворяет оценке (25) с
константой MV вместо M. Значит, в силу эквивалентности норм D и Dt0 , множество (38) является равномерно
ограниченным по норме ‖ · ‖D. Кроме того, оно является равностепенно непрерывным. Ибо всякая функция
из семейства непрерывна на отрезке [t0,T ] и на каждом промежутке разбиения функция представляет собой
орбиту полугруппы с генератором из семейства {A(s), s ∈ [t0,T ], и потому допускает оценку (< eMt). Поэтому
для всякого разбиения τ и любых t1, t2 ∈ [t0,T ], t2 > t1 справедлива оценка

‖(UτA+V(t2, t0) −UτA+V(t1, t0))u‖D = ‖(UτA+V(t2, t1) − I)UτA+V(t1, t0)u‖D.

Поэтому для любого ϵ > 0 существует число Cϵ > 0 такое, что

‖(UτA+V(t2, t0) −UτA+V(t1, t0))u‖D ≤ ϵ +Cϵ(t2 − t1)‖UτA+V(t1, t0)u‖D ≤ ϵ +Cϵ(t2 − t1)eMV T ‖u‖D.

Следовательно, по теореме Асколи–Арцела, семейство отображений (38) компактно в пространстве
C([t0,T ],D), и потому множество значений отображений из семейства (38) компактно в пространстве D.

Лемма 11. Пусть выполнены условия предположений 1–5. Пусть функция V(s), s ≥ 0, удовлетворяет условиям
леммы 5. Пусть 0 ≤ t0 ≤ T < +∞. Тогда существует такое a = a(t0,T ) > 0, что для любого u ∈ D и для любого ϵ > 0
существует число Aϵ > 0 такое, что для любого разбиения τ = {ξ0, ξ1, . . . , ξN} отрезка [t0,T ] с мелкостью |τ| < 1
имеем

‖
(︀
UτA+V(t, t0) −UτA,V(t, t0)

)︀
u‖H ≤ aϵ + Aϵ|τ| ∀ t ∈ [t0,T ],

где при всех t ∈ [t0,T ]

UτA,V(t, t0) = e(t−ξk(t))A(ξk(t))e(t−ξk(t))V(ξk(t))e(ξk(t)−ξk(t)−1)A(ξk(t)−1)e(ξk(t)−ξk(t)−1)V(ξk(t)−1) . . . e(ξ1−ξ0)A(ξ0)e(ξ1−ξ0)V(ξ0),

k(t) = max{ j ∈ {1, . . . ,N} : ξ j < t}.
Доказательство. Пусть u ∈ D. Для произвольного t ∈ [t0,T ] имеем

‖
(︀
UτA+V(t, t0) −UτA,V(t, t0)

)︀
u‖H = ‖

k(t)∑︁
j=0

UτA,V(t, ξ j+1)[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H ≤
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≤

N−1∑︁
j=0

‖UτA,V(ξN , ξ j+1)[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H . (39)

Следовательно,

‖
(︀
UτA+V(t, t0) −UτA,V(t, t0)

)︀
u‖H ≤

N−1∑︁
j=0

eMV (T−ξ j+1)‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H .

В силу условий на операторнозначные функции A(·), V(·) справедливы оценки

‖UτA+V(t, t0)u‖D(A(t)) ≤ eMV (t−t0)‖u‖D(A(t)) ≤ e(MV+B)(t−t0)‖u‖D ∀ t ∈ [t0,T ].

Выберем некоторе ϵ > 0. Тогда в силу компактности множества (38) в пространстве D существует конечный
набор точек σ = {u1, . . . , uM} ⊂ D такой, что для любого j ∈ {0, . . . ,N − 1} найдется i j ∈ {1, . . . ,M} такое, что
‖UτA+B(ξ j, t0)u − ui j‖D < ϵ.

В силу лемм 9 и 10, а также c учетом предположения 4 для выбранного ϵ > 0 найдется Cϵ > 0 такое, что при
каждом j ∈ {0, . . . ,N − 1} справедливы неравенства

‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]ui j‖H ≤

≤ (ϵ +Cϵ|τ|)|ξ j+1 − ξ j|‖(A(ξ j) +V(ξ j))ui j‖H ≤ (ϵ +Cϵ|τ|)|t j+1 − t j|eMVξ j‖ui j‖D.

Значит, при каждом j ∈ {1, . . . ,N − 1} справедлива оценка

‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H ≤

≤ ‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))](UτA+B(ξ j, t0)u − ui j )‖H+

+‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]ui j‖H . (40)

В силу леммы 7 получим

‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))](UτA+V(ξ j, t0)u − ui j )‖H ≤

≤ (ξ j+1 − ξ j)
(︀
‖eΘ1(A(ξ j)+V(ξ j))(ξ j+1−ξ j))(A(ξ j) +V(ξ j))(UτA+V(ξ j, t0)u − ui j )‖H+

+‖eΘ2A(ξ j)(ξ j+1−ξ j)A(ξ j)(UτA+V(ξ j, t0)u − ui j )‖H + ‖e
Θ3V(ξ j)(ξ j+1−ξ j)V(ξ j)(UτA+V(ξ j, t0)u − ui j )‖H

)︀
≤ beMVξ jϵ

при некотором b = b(MV ,V,T, u) > 0. Следовательно, из (40) следует, что для любого ϵ > 0 существует Bϵ > 0
такое, что при всех j ∈ 0, . . . ,N − 1 получим

‖[e(ξ j+1−ξ j)A(ξ j)e(ξ j+1−ξ j)V(ξ j) − e(ξ j+1−ξ j)(A(ξ j)+V(ξ j))]UτA+B(ξ j, t0)u‖H ≤ (bϵ + Bϵ|τ|)(ξ j+1 − ξ j)‖u‖D.

Поэтому, в силу (39) имеем

‖
(︀
UτA+V(t, t0) −UτA,V(t, t0)

)︀
u‖H ≤

N−1∑︁
j=0

(bϵ + Bϵ‖τ‖)|ξ j+1 − ξ j|‖u‖D ≤ (bϵ + Bϵ‖τ‖)|T − t0|‖u‖D

и, значит, справедливо утверждение леммы 11.
Лемма 11 позволяет получить аппроксимацию возмущенного эволюционного семейства посредством ите-

раций невозмущенного с эволюционным семейством, порожденным возмущением. В случае независящих от
времени генераторов и возмущений этот результат совпадает с формулой Троттера. Именно для приближения
такими итерациями возмущенного эволюционного семейства нам потребуются наиболее жесткие ограничения
на возмущения, сформулированные в лемме 5.

Теорема 6 (обобщенная формула Троттера). Пусть выполнены условия предположений 1–5. Пусть функция
V(s), s ≥ 0, удовлетворяет условиям леммы 5. Тогда для любого t0 ≥ 0, любого T ∈ (t0,+∞] и для любого u0 ∈ H
имеем

lim
|σ([s,t])|→0

sup
t0≤s≤t≤T

‖UA+V(t, s)u0 − eA(ξn−1)(ξn−ξn−1)eV(ξn−1)(ξn−ξn−1) ∘ . . . ∘ eA(ξ0)(ξ1−ξ0)eV(ξ0)(ξ1−ξ0)u0‖H = 0, (41)

где ξ0, . . . , ξn – точки разбиения σ([s, t]) отрезка [s, t] и |σ([s, t])| = max{|ξ1 − ξ0|, . . . , |ξn − ξn−1|} – мелкость этого
разбиения.
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Доказательство. Пусть u ∈ D, тогда eτA(t)u, eτV(t)u ∈ D для всех t ≥ 0, τ > 0 и множество Mu компактно в D в
силу леммы 10. Выберем некоторое ϵ > 0.Фиксируем некоторое T > 0.

В силу теоремы 4 двухпараметрическое эволюционное семейство UA+V(t, s), (t, s) ∈ R2
≤, определено и для

любого T > 0 выполнено

lim
|τ([0,T ])|→0

(︂
sup

0≤s≤t≤T
‖(UA+V(t, s) −UτA+V(t, s))u‖H

)︂
= 0,

гдеUτA+V(t, s) – кусочно-полугрупповое двухпараметрическое эволюционное семейство, определенное по опе-
раторнозначной функции A+V для каждого разбиения τ = τ([0,T ]) по формуле (20). Поэтому существует такое
δ > 0, что при всех τ : |τ| < δ выполняется оценка

sup
0≤s≤t≤T

‖(UA+V(t, s) −UτA+V(t, s))u‖H <
ϵ

4
.

Поскольку u ∈ D, то в силу леммы 11 существует постоянная Aϵ > 0, такая, что для любых (t, s) : 0 ≤ s ≤ t ≤ T
выполняется неравенство

‖(UτA+V(t, s) −UτA,V(t, s))u‖H ≤
ϵ

4
+ Aϵ|τ|.

Следовательно, найдется такое σ ∈ (0, δ), что для всех разбиений τ : |τ| < σ выполняется неравенство

sup
0≤s≤t≤T

‖(UA,V(t, s) −UτA+V(t, s))u‖H <
3ϵ
4
. (42)

Пусть теперь u ∈ H. Тогда найдется такое u0 ∈ D, что ‖u − u0‖H ≤
ϵ

8 e−T (M+B), поэтому

sup
0≤s≤t≤T

‖(UA,V(t, s)(u − u0)‖H <
ϵ

8
; ‖UτA+V(t, s))(u − u0)‖H <

ϵ

8
.

Фиксировав такое u0 получим, что найдется такое σ ∈ (0, δ), что для всех разбиений τ : |τ| < σ выполняется
неравенство (42). Следовательно, найдется такое σ > 0, что для любого разбиения τ : |τ| < σ справедливо
неравенство

sup
0≤s≤t≤T

‖(UA,V(t, s) −UτA+V(t, s))u‖H < ϵ.

Выразим значение меры µUA+V на произвольном цилиндрическом множестве из 𝒞yl с базой из принадлежа-
щих кольцу ℛ множеств, через значение меры µUA на множествах алгебры𝒜𝒞yl. Положим µUA∘G = Λ(UA ∘G),
где (UA ∘G)(t, s) = UA(t, s)G(t, s), (t, s) ∈ R2

≤ и

G(t, s) = e

t∫︀
s
V(ξ)dξ

, (t, s) ∈ R2
≤.

Фиксируем произвольное цилиндрическое множество Ct
B ∈ 𝒞yl с базой, состоящей из множеств, принадлежа-

щих кольцу ℛ. Тогда согласно (33) имеем

Λ[UA](Ct
B) = µUA (Ct

B) = (χBn ,UA(tn, tn−1)PBn−1 . . .PB1UA(t1, t0)χB0 ), n ∈ N, (43)

µ
UA∘G(Ct

B) = (χBn ,UA(tn, tn−1)G(tn, tn−1)PBn−1 . . .PB1UA(t1, t0)G(t1, t0)χB0 ), (44)

Bi ∈ ℛ, ∀ i = 0, . . . n.

Без ограничения общности можно считать, что t0 = 0. Фиксируем некоторое T > 0 и рассмотрим (t, s) ∈ R2
≤

такие, что 0 ≤ s ≤ t ≤ T . Рассмотрим цилиндрические множества Ct
B с t ⊂ [0,T].

Пусть S∞(E) – пространство простых измеримых относительно сигма-алгебры 𝒜R комплекснозначных
функций на пространстве E, наделенное sup-нормой. Пусть L∞(E) – пополнение пространства S∞(E), явля-
ющееся подпространством банахова пространства L∞(E). Символом L∞(R+,L∞(E)) обозначим пространство,
являющееся пополнением по sup-норме пространства S∞(R+, S∞(E)) простых измеримых отображений полу-
оси R+ в банахово пространство L∞(E) (см. [8]).

Поэтому из условия V ∈ L∞(R+,L∞(E)) следует, что существуют последовательность {τl} разбиений отрезка
[0,T ] набором точек {sl

0, s
l
1, . . . , s

l
Kl
}на конечную совокупность дизъюнктных промежутков {∆l

1, . . . ,∆
l
Kl
}, последо-

вательность {πl} разбиений пространства E на конечную совокупность дизъюнктных подмножеств {Bl
1, . . . , B

l
Ml
}
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из σ-алгебры𝒜R и последовательность наборов комплексных чисел αl = {α
l
k,m, k ∈ 1, . . . ,Kl, m ∈ 1, . . . ,Ml}, l ∈ N,

такие, что
lim
l→∞

(︀
‖ ‖Vl(t) − V(t)‖L∞(E))‖L∞([0,T ])

)︀
= 0, (45)

где {Vl} : N→ S∞(R+,S∞(E)) – последовательность простых функций вида

Vl(s, x) =
Kl∑︁

k=1

Ml∑︁
m=1

α
l
k,mχ∆l

k
(t)χBl

m
(x), x ∈ E.

Следовательно, ‖ ‖Vl(t) −V(t)‖B(H)‖L∞([0,T ]) → 0 при l→ ∞, и потому

lim
l→∞

sup
t,s∈[0,T ]

||G(t, s) −Gl(t, s)||B(H) = 0 (46)

при каждом T > 0, где Gl(t, s) = exp(
t∫︀

s
Vl(ξ)dξ), (t, s) ∈ R2

≤ при каждом l ∈ N.

Тогда согласно (44) для произвольного фиксированного множества Ct
B ∈ Cyl при t ⊂ [0,T] имеет место

следующая поточечная сходимость цилиндрических мер:

Λ[UA ∘G](Ct
B) = lim

l→∞

(︀
Λ[UA ∘Gl](Ct

B)
)︀
. (47)

При каждом l ∈ N получаем

Λ[UA ∘Gl](Ct
B) = (χBn ,UA(tn, tn−1)Gl(tn, tn−1)PBn−1 . . .PB1UA(t1, t0)Gl(t1, t0)χB0 ) =

= (χBn ,UA(tn, tn−1) exp

⎛⎝ tn∫︁
tn−1

Vl(ξ)dξ

⎞⎠PBn−1 . . .PB1UA(t1, t0) exp

⎛⎝ t1∫︁
t0

Vl(ξ)dξ

⎞⎠ χB0 ). (48)

Для фиксированного множества Ct
B на отрезке выбран фиксированный набот точек t = {t0, t1, . . . , tn} ⊂

[0,T]. При каждом l ∈ N функция Vl ∈ S∞(R+,S∞(E)) из удовлетворяющей условию (45) последовательности
{Vl} имеет вид

Vl(s, x) =
Kl∑︁

k=1

Ml∑︁
m=1

α
l
k,mχ∆l

k
(t)χBl

m
(x), x ∈ E, (49)

где {∆l
1, . . . ,∆

l
Kl
} – разбиение отрезка [0,T ] на промежутки набором точками {sl

0, s
l
1, . . . , s

l
Kl
}. Причем при каж-

дом l ∈ N можно, при необходимости, дополнительно разбить промежутки ∆l
1, . . . ,∆

l
Kl

таким образом, что
{t0, t1, . . . , tn} ⊂ {sl

0, s
l
1, . . . , s

l
Kl
}. За счет этого для каждого k ∈ {1, . . . ,Kl} определено единственное j(k) ∈ 1, . . . , n

такое, что int(∆l
k) ⊂ [t j(k)−1, t j(k)). Для каждого промежутка [t j−1, t j) из соответствующего фиксированному набору

временных индексов t разбиения {[t0, t1), . . . , [tn−1, tn)} промежутка [t0, tn) ⊂ [0,T ] положим

Kl
j = {k ∈ {1, . . . ,Kl} : ∆l

k ⊂ [t j−1, t j)}, j = 1, . . . , n.

Тогда для каждого интеграла в показателях экспонент в формуле (48) при всех j ∈ {1, . . . , n} имеем

t j∫︁
t j−1

Vl(ξ, x)dξ =
∑︁
k∈Kl

j

Vl|∆l
k
(x) |∆l

k | =
∑︁
k∈Kl

j

Ml∑︁
m=1

α
l
k,mχBl

m
(x) |∆l

k |, x ∈ E,

значит,
t j∫︁

t j−1

Vl(ξ)dξ =
∑︁
k∈Kl

j

Ml∑︁
m=1

α
l
k,mPBl

m
|∆l

k |,

где PB – ортогональный проектор в пространстве H, действующий как оператор умножения на индикаторную
функцию измеримого множества B ∈ 𝒜R. Поэтому c учетом, что PBl

k
PBl

m
= PBl

k

⋂︀
Bl

m
= PBl

m
δk,m, при всех j ∈

{1, . . . , n} имеем

exp

⎛⎜⎝ t j∫︁
t j−1

V(ξ)dξ

⎞⎟⎠ = exp

⎛⎝∑︁
k∈Kl

j

Ml∑︁
m=1

|∆l
k |α

l
k,mPBl

m

⎞⎠ = Ml∑︁
m=1

exp

⎛⎝∑︁
k∈Kl

j

|∆l
k |α

l
k,m

⎞⎠PBl
m
.
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Поэтому из (48) получаем

Λ[UA ∘Gl](Ct
B) = (χBn ,UA(tn, tn−1)Gl(tn, tn−1)PBn−1 . . .PB1UA(t1, t0)Gl(t1, t0)χB0 ) =

= (χBn ,UA(tn, tn−1)

⎡⎣ Ml∑︁
mn=1

exp

⎛⎝∑︁
k∈Kl

n

|∆l
k |α

l
k,mn

⎞⎠PBl
mn

⎤⎦PBn−1 . . .PB1UA(t1, t0)

⎡⎣ Ml∑︁
m1=1

exp

⎛⎝∑︁
k∈Kl

1

|∆l
k |α

l
k,m1

⎞⎠PBl
m1

⎤⎦ χB0 ) =

=

Ml∑︁
mn=1

· · ·

Ml∑︁
m1=1

n∏︁
j=1

exp

⎛⎝∑︁
k∈Kl

j

|∆l
k |α

l
k,m j

⎞⎠ (χBn ,UA(tn, tn−1)PBl
mn∩Bn−1 . . .PBl

m2
∩B1UA(t1, t0)PBl

m1
∩B0χB0 ) =

=

Ml∑︁
mn=1

· · ·

Ml∑︁
m1=1

exp

⎛⎝ n∑︁
j=1

∑︁
k∈Kl

j

|∆l
k |α

l
k,m j

⎞⎠ µUA

(︂
C t0, ..., tn−1, tn

B0∩Bl
j0
,..., Bn−1

⋂︀
Bl

jn−1
, Bn

)︂
. (50)

Теорема 7. Пусть UA : R2
≤ → B(H) – двухпараметрическое эволюционное семейство, удовлетворяющее усло-

виям предположений 1–5 и T ∈ (0,+∞). Пусть V ∈ C1(R+,L∞(E)), ‖V(t)‖L∞(E) < (‖(A(t))−1‖B(H))−1 при всех t ≥ 0 и
V(s)D ⊂ D при всех s ≥ 0. Тогда для любых u, v ∈ H имеет место следующая формула Фейнмана–Каца:

(UA+V(T, 0)u, v) =
∫︁

ℳ([0,T ], E)

exp

⎛⎝ T∫︁
0

V(s, γ(s))ds

⎞⎠ u(γ(0))v̄(γ(T ))dΛ(UA)(γ), (51)

где правая часть (51) является символом, обозначающим предел

lim
n→∞

⎛⎜⎝lim
l→∞

⎡⎢⎣ ∫︁
ℳ([0,T ], E)

exp

⎛⎜⎝ n∑︁
j=1

j
n T∫︁

j−1
n T

Vl(s, γ(s))ds

⎞⎟⎠ u(γ(0))v̄(γ(T ))dΛ(UA)(γ)

⎤⎥⎦
⎞⎟⎠ . (52)

Доказательство. Рассмотрим значения (χBn , UA+V(T, 0)χB0 ) для произвольных B0, B ∈ ℛ— этого будет доста-
точно, поскольку пространство S (ℛ) всюду плотно в пространстве H.

Рассмотрим функцию

F(t, s) = UA(t, s) exp

⎛⎝ t∫︁
s

V(ξ)dξ

⎞⎠ = UA(t, s)GV(t, s), (t, s) ∈ R2
≤.

Согласно теореме 6, если {τn} – риманова последовательность разбиений отрезка [0,T ] точками ξn
j =

T
n j,

j = 0, 1, . . . , n, то при любом B0 ∈ ℛ имеет место равенство (41), т.е.

UAV(t, 0)χB0 = lim
n→∞

F(t, ξn
Kn(t))F(ξn

Kn(t), ξ
n
Kn(t)−1) . . .F(ξn

1, ξ
n
0)χB0 = (53)

= lim
n→∞

UA(t, ξn
Kn(t))GV(t, ξn

Kn(t))UA(ξn
Kn(t), ξ

n
Kn(t)−1)GV(ξn

Kn(t), ξ
n
Kn(t)−1) . . .UA(ξn

1, ξ
n
0)GV(ξn

1, ξ
n
0)χB0 ,

где Kn(t) = max{ j ∈ {0, 1, . . . , n} : ξn
j < t}. Следоватетельно, если {Vl}– последовательность простых, т.е. имеющих

вид (49), функций аппроксимирующих функцию V в смысле условия (45), то в силу (47), при каждом n ∈ N
справедливо равенство

UA(t, ξn
Kn(t))GV(t, ξn

Kn(t))UA(ξn
Kn(t), ξ

n
Kn(t)−1)GV(ξn

Kn(t), ξ
n
Kn(t)−1) . . .UA(ξn

1, ξ
n
0)GV(ξn

1, ξ
n
0)χB0 =

= lim
l→∞

UA(t, ξn
Kn(t))GVl

(t, ξn
Kn(t))UA(ξn

Kn(t), ξ
n
Kn(t)−1)GVl

(ξn
Kn(t), ξ

n
Kn(t)−1) . . .UA(ξn

1, ξ
n
0)GVl

(ξn
1, ξ

n
0)χB0 .

При каждом n ∈ N положим Bn = B ∈ ℛ. Тогда при каждом n ∈ N из (53) с помощью (50) получаем

(χB, UA+V(t, 0)χB0 ) = lim
n→∞

[︂
lim
l→∞

(χBn ,UA(t, ξn
Kn(t))GVl

(t, ξn
Kn(t)) . . .UA(ξn

1, ξ
n
0)GVl

(ξn
1, ξ

n
0)χB0 )

]︂
=

= lim
n→∞

⎡⎣lim
l→∞

Ml∑︁
mn=1

· · ·

Ml∑︁
m1=1

exp(
n∑︁

j=1

∑︁
k∈Kl

j

|∆l
k |α

l
k,m j

)µUA

(︂
C t0, ..., tn−1, tn

B0∩Bl
j0
,..., Bn−1

⋂︀
Bl

jn−1
, Bn

)︂⎤⎦ . (54)
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Поскольку при каждом l ∈ N функция Vl имеет вид (49), то при любых n, l ∈ N функция

Φ(γ) = χBn (γ(T ))χB0 (γ(0)) exp

⎛⎜⎝ n∑︁
j=1

j
n T∫︁

j−1
n T

Vl(s, γ(s))ds

⎞⎟⎠ , γ ∈ ℳ([0,T ], E),

стоящее под знаком предела в (52) при u = χB0 , v = χBn , может принимать лишь конечное множество значений
на пространствеℳ([0,T ], E) и является ступенчатой функцией, измеримой относительно алгебры𝒜Cyl. Следо-
вательно, функция Φ : ℳ([0,T ], E)→ C интегрируема по мере Λ(UA) и справедливо равенство

∫︁
ℳ([0, t], E)

exp

⎛⎜⎝ n∑︁
j=1

j
n t∫︁

j−1
n t

Vl(s, γ(s))ds

⎞⎟⎠ χB0 (γ(0))χBn (γ(t))dΛ(UA)(γ) =

=

Ml∑︁
mn=1

· · ·

Ml∑︁
m1=1

exp(
n∑︁

j=1

∑︁
k∈Kl

j

|∆l
k |α

l
k,m j

)µUA

(︂
C t0, ..., tn−1, tn

B0∩Bl
j0
,..., Bn−1

⋂︀
Bl

jn−1
, Bn

)︂
,

что совпадает с выражением (54).
Таким образом, получены аппроксимации двухпараметрического эволюционного семейства UA+V инте-

гралами от линейных комбинаций индикаторных функций по мере Λ(UA).
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Abstract. A bijective mapping of the space of operator-valued functions into the set of complex-valued finite
additive cylindrical measures on the space of trajectories is constructed and studied. The conditions under
which the Cauchy problem for the first order equation with a variable operator generates a two-parameter
evolutionary family of operators are found. A representation of the solution to the Cauchy problem with a
variable perturbed generator by means of a continuum integral of the perturbation-defined functional on the
trajectory space over a cylindrical pseudomeasure specified by an unperturbed two-parameter evolutionary
family of operators is obtained.
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