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В прямоугольнике Ω = {(x, t) | 0 < x < 1, 0 < t < T } рассматривается начально-краевая задача для сингулярно
возмущенного параболического уравнения

ε
2
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2u
∂x2 −

∂u
∂t

)︂
= F(u, x, t, ε), (x, t) ∈ Ω,

u(x, 0, ε) = φ(x), 0 ≤ x ≤ 1, u(0, t, ε) = ψ1(t), u(1, t, ε) = ψ2(t), 0 ≤ t ≤ T.

Предполагается, что в угловых точках (k, 0) прямоугольника Ω, где k = 0 или 1, функция F(u) = F(u, k, 0, 0)
имеет вид

F(u) = u3 − u3
0, где u0 = u0(k) < 0.

Для построения асимптотики решения задачи используется нелинейный метод угловых пограничных функ-
ций. Ранее был рассмотрен случай, когда граничное значение φ в угловых точках отделено от точки перегиба
u = 0 условием

u0(k) < φ(k) ≤
u0(k)

2
< 0,

при котором на роль барьерных подошли функции "простейшего" вида, пригодные сразу во всей рассматри-
ваемой области. В настоящей работе рассматривается случай

u0(k)
2
< φ(k) < 0,

при котором область приходится разбивать на части, в каждой подобласти строить свои барьерные функции с
учетом их непрерывной стыковки на общих границах подобластей, а затем проводить сглаживание кусочно-
непрерывных нижних и верхних решений. В результате получается полное асимптотическое разложение ре-
шения при ε→ 0 и обосновывается его равномерность в замкнутом прямоугольнике. Библ. 15.
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ВВЕДЕНИЕ

Сингулярно возмущенные задачи с малым параметром для уравнений с частными производными встре-
чаются в различных задачах математической физики. В их решениях, как правило, возникают пограничные
слои, где происходит резкий переход между разными характерными модами. Типичный пример – это задачи
обтекания тел вязкой жидкостью, когда вблизи поверхности тела скорость потока резко падает до нуля. Дру-
гой пример – это задачи диффузии, когда на границе области поддерживается постоянная концентрация или
постоянный поток. В статье рассматриваются именно такие задачи, когда вблизи угловых точек прямоуголь-
ника возникают пограничные слои, сшивающие решение для начальных и граничных условий. Проводится
подробное описание угловых пограничных слоев при кубических нелинейностях в уравнении.

Такие задачи имеют более чем полувековую историю. Общая теория для линейных параболических урав-
нений была построена В.Ф. Бутузовым в середине 1970-х годов. Для нелинейных эллиптических и параболи-
ческих уравнений с краевыми условиями первого рода разработка теории началась в работах И.В. Денисова в
1990-х годах. В настоящее время достаточно подробно исследованы только задачи с квадратичными нелиней-
ностями. Кубические нелинейности исследованы лишь в частных случаях.
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Нелинейный метод угловых пограничных функций является естественным обобщением (линейного) ме-
тода угловых пограничных функций В.Ф. Бутузова (см. [1], [2]). При построении асимптотических разложе-
ний решений нелинейных дифференциальных уравнений в частных производных с краевыми условиями пер-
вого рода (задача Дирихле) приходится доказывать существование подходящих решений нелинейных урав-
нений. Это делается с помощью барьерных функций, построение которых представляет основную проблему
(см. [3]–[9]). В настоящее время разработаны возможные виды "простейших" гладких барьерных функций
для оценки решений нелинейных задач, определяющих главные члены угловой части асимптотики. Если же
гладкие барьеры не удается построить сразу во всей рассматриваемой области, то предполагается выполнение
следующих шагов:

1) разбиение области на части;
2) построение в каждой подобласти нижних и верхних решений задачи;
3) непрерывная стыковка нижних и верхних решений на общих границах подобластей;
4) последующее сглаживание кусочно-непрерывных нижних и верхних решений.
Для обоснования построенной асимптотики решения применяется универсальный метод дифференциаль-

ных неравенств Н.Н. Нефедова (см. [10]).

1. ПОСТАНОВКА ЗАДАЧИ

Обозначим через Ω прямоугольник {(x, t) | 0 < x < 1, 0 < t < T }. Рассмотрим начально-краевую задачу вида

ε
2
(︂

a2 ∂
2u
∂x2 −

∂u
∂t

)︂
= F(u, x, t, ε), (x, t) ∈ Ω, (1)

u(x, 0, ε) = φ(x), 0 ≤ x ≤ 1, (2)

u(0, t, ε) = ψ1(t), u(1, t, ε) = ψ2(t), 0 ≤ t ≤ T, (3)

где ε – малый положительный параметр. Предположим, что выполнены следующие условия.
Условие 1. Функции F(u, x, t, ε),ϕ(x),ψ1(t) иψ2(t) являются достаточно гладкими и в угловых точках прямоуголь-

ника Ω выполняются условия согласованности начально-краевых значений

φ(0) = ψ1(0), φ(1) = ψ2(0).

Условие 2. Вырожденное уравнение F(u, x, t, 0) = 0 в замкнутом прямоугольнике Ω имеет решение, которое обо-
значается как u = ū0(x, t).

Заметим, что в силу нелинейности это уравнение может иметь и другие решения.
Условие 3. Производная F′u(ū0 (x, t), x, t, 0) > 0 в замкнутом прямоугольнике Ω.
Условие 4. Начальная задача

dΠ0

dτ
= −F(ū0(x, 0) + Π0, x, 0, 0), Π0(x, 0) = φ(x) − ū0(x, 0),

имеет решение Π0(x, τ) при τ ≥ 0, удовлетворяющее условию Π0(x,∞) = 0 (здесь параметр x ∈ [0, 1]).
Условие 5. Для систем

dz1

dy
= z2, a2 dz2

dy
= F(ū0(k, t) + z1, k, t, 0), (4)

прямые z1 = ψ1+k(t) − ū0(k, t) пересекают сепаратрисы, входящие в точку покоя (z1, z2) = (0, 0) при y → ∞ (здесь t —
параметр, k = 0 или 1).

В силу условий 1–3 точка (z1, z2) = (0, 0) является точкой покоя типа седла систем (4).
При сделанных предположениях нельзя гарантировать существование решения задачи (1)–(3). Кроме этого,

даже если решение задачи существует, его явное представление, как правило, получить не удается. Поэтому
для доказательства существования решения задачи (1)–(3) требуются дополнительные условия, которые будут
сформулированы ниже.

2. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ

Решение задачи (1)–(3) ищется в виде асимптотического ряда по параметру ε → 0, состоящего из шести
частей:

u(x, t, ε) = ū + (Π + Q + Q*) + (P + P*). (5)
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Здесь ū – регулярная часть асимптотики, играющая роль внутри прямоугольника Ω, Π, Q и Q* – погранс-
лойные функции, играющие роль вблизи сторон прямоугольникаΩ соответственно t = 0, x = 0 и x = 1, P и P* –
угловые пограничные функции, играющие роль вблизи вершин прямоугольникаΩ соответственно (0, 0) и (1, 0).

Формальная процедура построения регулярной части асимптотики и погранслойных функций хорошо от-
работана и подробно описана в [11]. Однако, для построения угловых пограничных функций требуются обо-
значения, вводимые при построении предыдущих частей асимптотики. В связи с этим процедуру построения
регулярной и погранслойной частей асимптотики всякий раз приходится схематично повторять.

В уравнении (1) функция F заменяется выражением, аналогичным (5):

F(u, x, t, ε) = F̄ + (ΠF + QF + Q*F) + (PF + P*F). (6)

Выражения (5) и (6) подставляются в уравнение (1), которое разделяется на части: регулярную, погранслой-
ные и угловые. Регулярная часть асимптотики строится в виде ряда по степеням ε:

ū(x, t, ε) =
∞∑︁

k=0

ε
k ūk(x, t).

Погранслойная часть асимптотики вводится для устранения невязок регулярной части с начальным и гра-
ничными условиями. Погранслойные функции Π, Q и Q* ищутся в виде рядов

Π(x, τ, ε) =
∞∑︁

k=0

ε
kΠk(x, τ), Q(ξ, t, ε) =

∞∑︁
k=0

ε
kQk(ξ, t), Q*(ξ*, t, ε) =

∞∑︁
k=0

ε
kQ*k(ξ*, t),

где

ξ =
x
ε
, ξ* =

1 − x
ε
, τ =

t
ε2

суть растянутые переменные.
С целью устранения невязок с начальным и граничными условиями вблизи угловых точек (0, 0) и (1, 0) пря-

моугольника Ω вводятся угловые пограничные функции P(ξ, τ, ε) и P*(ξ*, τ, ε), нахождение которых доставляет
основные трудности при решении поставленной задачи. Эти функции ищутся в виде рядов

P(ξ, τ, ε) =
∞∑︁

k=0

ε
kPk(ξ, τ), P*(ξ*, τ, ε) =

∞∑︁
k=0

ε
kP*k(ξ*, τ).

Задача для определения P0(ξ, τ) ставится в первой четверти R2
+ плоскости растянутых переменных (ξ, τ) и

имеет вид

a2 ∂
2P0

∂ξ2 −
∂P0

∂τ
= F (ū0 + Π0 + Q0 + P0) − F (ū0 + Π0) − F (ū0 + Q0) , (7)

P0(0, τ) = −Π0(0, τ), P0(ξ, 0) = −Q0(ξ, 0), (8)

P0(ξ, τ)→ 0 при ξ + τ→ ∞, (9)

где для краткости используются обозначения

F(u) = F(u, 0, 0, 0), ū0 = ū0(0, 0), Πk = Πk(0, τ), Qk = Qk(ξ, 0), Pk = Pk(ξ, τ).

Для функций Pk(ξ, τ), k ≥ 1, в области R2
+ получаются линейные задачи

a2 ∂
2Pk

∂ξ2 −
∂Pk

∂τ
= F′ (ū0 + Π0 + Q0 + P0) Pk + hk, (10)

Pk(0, τ) = −Πk(0, τ), Pk(ξ, 0) = −Qk(ξ, 0), (11)

Pk(ξ, τ)→ 0 при ξ + τ→ ∞, (12)

где неоднородности hk = hk(ξ, τ) удовлетворяют экспоненциальным оценкам убывания вида

|hk(ξ, τ)| ≤ Cexp(−κ(ξ + τ)), (13)

если подобным оценкам удовлетворяют функции P0, . . . , Pk−1. Здесь C и κ – некоторые положительные числа.
Задачи для угловых погранфункций P*k(ξ*, τ), k ≥ 0, ставятся аналогично.
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В дальнейшем для определенности считается, что в каждой угловой точке граничное значение φ больше
корня вырожденного уравнения ū0. (Случай φ < ū0 сводится к предыдущему с помощью замены u на −u.)

Для доказательства существования решения задачи (7)–(9) используется метод верхних и нижних решений
(см. [12]–[14]), который заключается в том, что задача

L(Z) = 0 в области D,

Z = h на границе ∂D

имеет решение Z в границах
Z− ≤ Z ≤ Z+,

если в области D выполняются неравенства

L(Z+) ≤ 0, L(Z−) ≥ 0, Z− ≤ Z+,

а на ее границе
Z− ≤ h ≤ Z+.

При исследовании задачи (7)–(9) будет удобно пользоваться обозначением

L(Z) := a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F (ū0 + Π0 + Q0 + Z) + F (ū0 + Π0) + F (ū0 + Q0) .

Тогда задача (7)–(9) примет вид
L(P0) = 0 в области R2

+, (14)

P0(0, τ) = −Π0(0, τ), P0(ξ, 0) = −Q0(ξ, 0), (15)

P0(ξ, τ)→ 0 при ξ + τ→ ∞. (16)

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Предполагается, что в угловых точках (k, 0) прямоугольника Ω, где k = 0 или 1, функция F(u) = F(u, k, 0, 0)
имеет вид

F(u) = u3 − ū3
0, где числа ū0 = ū0(k, 0) < 0.

В этом случае функция F(u) при u > ū0 сначала выпукла вверх, в точке u = 0 имеет перегиб и далее становится
выпуклой вниз. В работе [9] задача (1)–(3) рассмотрена при условии, когда граничное значение φ в угловых
точках отделено от точки перегиба u = 0 условием

ū0 < φ ≤
ū0

2
< 0.

При таком условии для задачи (14)–(16) на роль барьерных подходят гладкие функции “простейшего” вида,
пригодные сразу во всей рассматриваемой области. Было доказано следующее утверждение.

Теорема 1. Пусть выполнены условия 1–5 и в угловых точках (k, 0) прямоугольника Ω, где k = 0 или 1, функция
F(u) = F(u, k, 0, 0) имеет вид

F(u) = u3 − ū3
0, где числа ū0 = ū0(k, 0) < 0.

Если граничные значения φ = φ(k) удовлетворяют условию

ū0 < φ ≤
ū0

2
< 0,

то для достаточно малых ε задача (1)–(3) имеет решение u(x, t, ε), для которого ряд

∞∑︁
k=0

ε
k
(︁

ūk(x, t) + Πk(x, τ) + Qk(ξ, t) + Q*k(ξ*, t) + Pk(ξ, τ) + P*k(ξ*, τ)
)︁

является асимптотическим представлением при ε→ 0 в замкнутом прямоугольнике Ω.
Далее считается, что

ū0

2
< φ < 0. (17)
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Ранее с использованием погранслойных функций, определяемых обыкновенными дифференциальными
уравнениями и необходимыми экспоненциальными оценками, были построены так называемые “простей-
шие” функции

Z1(ξ, τ) ≡ 0, Z2(ξ, τ) = Cexp(−k(ξ + τ)), Z3(ξ, τ) = −2
√︀
Π0(0, τ)Q0(ξ, 0),

Z4(ξ, τ) = −
Π0(0, τ)Q0(ξ, 0)

φ − ū0
.

В отдельных случаях такие функции подходят на роль барьерных во всей области R2
+. При условии (17) эти

функции не подходят на роль барьерных для задачи (14)–(16) во всей области R2
+. Область R2

+ приходится раз-
бивать на части и в каждой из них строить так называемые кусочно-гладкие барьеры, а затем сглаживать их.

Определение. Для задачи

L(Z) = 0 в области D, Z = h на границе ∂D,

функции Z+(ξ, τ) и Z−(ξ, τ) являются кусочно-гладкими верхним и нижним решениями задачи, если
1) Z+(ξ, τ) и Z−(ξ, τ) непрерывны в замкнутой области D̄;
2) существует разбиение области D на конечное число подобластей, на внутренности каждой из которой

выполняются неравенства
L(Z+) ≤ 0, L(Z−) ≥ 0, Z− ≤ Z+;

3) на границе области D выполняются неравенства

Z− ≤ h ≤ Z+.

Лемма 1. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) существует положительное число ρ0 такое, что в области

Ω0 = {(ξ, τ)| ξ ≥ ρ0, τ ≥ ρ0}

функция вида
Z0− = −r exp(−κ(ξ + τ)),

где r и κ – некоторые положительные числа, является нижним барьером задачи (14)–(16).
Доказательство. Требуется доказать,что L(Z0−) ≥ 0. Пусть

s = Π0(0, τ), t = Q0(ξ, 0), Z = Z0−, λ = ū0 + s + t.

При таких обозначениях имеем

L(Z) = a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F(λ + Z) + F(ū0 + s) + F(ū0 + t) =

= a2
κ

2Z + κZ −
[︀
(λ + Z)3 − ū3

0

]︀
+
[︀
(ū0 + s)3 − ū3

0

]︀
+
[︀
(ū0 + t)3 − ū3

0

]︀
=

= a2
κ

2Z + κZ − λ3 − 3λ2Z − 3λZ2 − Z3 + (ū0 + s)3 + (ū0 + t)3 − ū3
0 =

=
[︀
−λ3 + (ū0 + s)3 + (ū0 + t)3 − ū3

0

]︀
+
(︀
a2
κ

2 + κ − 3λ2)︀Z − 3λZ2 − Z3 =

= −3st(ū0 + λ) + (a2
κ

2 + κ − 3λ2)Z − 3λZ2 − Z3.

Так как s и t принадлежат промежутку (0,φ − ū0], то при условии (17) первое слагаемое в выражении L(Z)
положительно:

−3st(ū0 + λ) > 0.

Остальная часть L(Z) имеет вид

(a2
κ

2 + κ − 3λ2)Z − 3λZ2 − Z3 = −Z
[︀
Z2 + 3λZ + (3λ2 − a2

κ
2 − κ)

]︀
.

Выражение L(Z) будет положительным при условии положительности выражения, стоящего в квадратных
скобках:

Z2 + 3λZ + (3λ2 − a2
κ

2 − κ).
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Значения λ = ū0+ s+ t заполняют промежуток (ū0, 2φ− ū0]. Так как ū0 < 0, а 2φ− ū0 > 0, то λможет принимать
нулевое значение, при котором

3λ2 − a2
κ

2 − κ < 0.

Чтобы избежать этого нужно воспользоваться монотонным убыванием и стремлением к нулю значений s =
Π0(0, τ) и t = Q0(ξ, 0) при τ и ξ, стремящихся к ∞. Это позволяет утверждать, что для любого числа β ∈ (ū0, 0)
существует положительное число ρ0 такое, что

ū0 + Π0(0, ρ0) + Q0(ρ0, 0) = β < 0, (18)

и в области
Ω0 = {(ξ, τ)| ξ ≥ ρ0, τ ≥ ρ0}

выполняется неравенство
λ = ū0 + s + t < ū0 + Π0(0, ρ0) + Q0(ρ0, 0) = β < 0.

Тогда дискриминант квадратного трехчлена, стоящего в квадратных скобках:

9λ2 − 4(3λ2 − a2
κ

2 − κ) = 4(a2
κ

2 + κ) − 3λ2 < 4(a2
κ

2 + κ) − 3β2 < 0,

если

0 < κ <

√︀
1 + 3a2β2 − 1

2a2 . (19)

При выполнении условий (17)–(19) значения L(Z0−) > 0 и функция вида

Z0− = −r exp(−κ(ξ + τ))

является нижним барьером задачи (14)–(16) в области Ω0. Лемма 1 доказана.
Замечание 1. Лемма 1 не вносит ограничений на величину коэффициента r у функции Z0−.
После выделения из R2

+ подобласти Ω0 оставшуюся часть области R2
+ разобьем на две подобласти:

Ω1 = {(ξ, τ)| ξ ≥ τ, 0 ≤ τ ≤ ρ0} и Ω2 = {(ξ, τ)| 0 ≤ ξ ≤ ρ0, τ ≥ ξ}.

Лемма 2. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) нижним барьером задачи (14)–(16) в области Ω1 является функция вида

Z1−(ξ, τ) = −h(τ) exp(−κξ),

где κ – достаточно малое положительное число, а функция h(τ) на промежутке [0, ρ0] обладает свойствами

h(τ) ≥ Π0(0, τ) > 0, h′(τ) > 0, h′′(τ) < 0. (20)

Доказательство. Требуется доказать,что L(Z1−) ≥ 0. Пусть

s = Π0(0, τ), t = Q0(ξ, 0), Z = Z1−, λ = ū0 + s + t.

При таких обозначениях имеем

L(Z) = a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F(λ + Z) + F(ū0 + s) + F(ū0 + t) =

= a2
κ

2Z + h′(τ) exp(−κξ) − 3st(ū0 + λ) − 3λ2Z − 3λZ2 − Z3 =

= −3st(ū0 + λ) +
[︂

a2
κ

2 −
h′(τ)
h(τ)

− 3λ2
]︂

Z − 3λZ2 − Z3.

Как и в лемме 1 значения
−3st(ū0 + λ) > 0.
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Остальная часть L(Z) имеет вид[︂
a2
κ

2 −
h′(τ)
h(τ)

− 3λ2
]︂

Z − 3λZ2 − Z3 = −Z
[︂

Z2 + 3λZ +
(︂

h′(τ)
h(τ)

+ 3λ2 − a2
κ

2
)︂]︂
.

Дискриминант квадратного трехчлена, стоящего в квадратных скобках

D = 9λ2 − 4
(︂

h′(τ)
h(τ)

+ 3λ2 − a2
κ

2
)︂
= −3λ2 − 4

(︂
h′(τ)
h(τ)

− a2
κ

2
)︂
< 0

при условии
h′(τ)
h(τ)

− a2
κ

2 > 0,

что достижимо, если

a2
κ

2 < min
h′(τ)
h(τ)
.

Так как функция h′(τ)/h(τ) убывает на промежутке [0, ρ0], то

min
h′(τ)
h(τ)

=
h′(ρ0)
h(ρ0)

,

и нужно иметь

a2
κ

2 <
h′(ρ0)
h(ρ0)

, 0 < κ <
1
a

√︃
h′(ρ0)
h(ρ0)

.

С учетом (19) корректируем выбор числа κ:

0 < κ < min

(︃
1
a

√︃
h′(ρ0)
h(ρ0)

,

√︀
1 + 3a2β2 − 1

2a2

)︃
. (21)

При условии (21) выполняется неравенство L(Z1−) ≥ 0. Лемма 2 доказана.
В областиΩ2 нижний барьер строится симметрично барьеру из областиΩ1, и справедливо следующее утвер-

ждение.
Лемма 3. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) нижним барьером задачи (14)–(16) в области Ω2 является функция

Z2−(ξ, τ) = Z1−(τ, ξ) = −h(ξ) exp(−κτ),

где Z1−(ξ, τ) – функция из леммы 2.
Лемма 3 завершает построение нижних барьеров для оценки решения задачи (14)–(16) во всех трех областях

Ω0,Ω1 иΩ2, на которые была разделена область R2
+. Эти барьеры можно непрерывно состыковать друг с другом.

Так функции Z1−(ξ, τ) и Z2−(ξ, τ) уже по построению непрерывно стыкуются друг с другом на общей границе об-
ластейΩ1 иΩ2, то есть на отрезке ξ = τ, где τ ∈ [0, ρ0]. На общей границе областейΩ0 иΩ1, которая представляет
собой луч τ = ρ0, ξ ∈ [ρ0,∞), непрерывную стыковку кусков Z0−(ξ, τ) и Z1−(ξ, τ) обеспечивает выбор параметра κ
для функции Z0−(ξ, τ), который остался свободным:

h(ρ0) = r exp(−κρ0).

Это же условие обеспечивает непрерывную стыковку кусков Z0−(ξ, τ) и Z2−(ξ, τ) на общей границе областей
Ω0 и Ω2. Таким образом получается кусочно-гладкое нижнее решение задачи (14)–(16).

Далее методами работы [5] проводится процедура сглаживания кусочно-гладкого нижнего решения до глад-
кого нижнего решения, что приводит к справедливости следующего утверждения.

Теорема 2. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) задача (14)–(16) имеет нижнее решение Z−(ξ, τ), удовлетворяющее экспоненциальной оценке
убывания вида

0 < −Z−(ξ, τ) ≤ Cexp(−κ(ξ + τ)), (22)
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где C и κ – некоторые положительные числа.
Теперь перейдем к построению верхнего решения задачи (14)–(16). На этом пути имеются дополнитель-

ные трудности, связанные с положительностью свободного члена в выражении L(Z) через Z. Тем не менее, эти
трудности удается преодолеть за счет другой техники.

Лемма 4. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) существует положительное число ρ0 такое, что в области

Ω0 = {(ξ, τ)| ξ ≥ ρ0, τ ≥ ρ0}

функция вида
Z0+ = r exp(−κ(ξ + τ)),

где r и κ – некоторые положительные числа, является верхним барьером задачи (14)–(16).
Доказательство. Требуется доказать неравенство L(Z0+) ≤ 0. Вводим обозначения, аналогичные принятым

ранее:
s = Π0(0, τ), t = Q0(ξ, 0), Z = Z0+, λ = ū0 + s + t.

При таких обозначениях имеем

L(Z) = a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F(λ + Z) + F(ū0 + s) + F(ū0 + t) =

= −3st(ū0 + λ) + (a2
κ

2 + κ − 3λ2)Z − 3λZ2 − Z3.

В выражении для L(Z) первое слагаемое оказывается положительным:

−3st(ū0 + λ) > 0,

поэтому отрицательность L(Z) нужно обеспечить за счет других слагаемых. Воспользуемся оценками

0 < s = Π0(0, τ) ≤ (φ − ū0)exp(−κ1τ),

0 < t = Q0(ξ, 0) ≤ (φ − ū0)exp(−κ2ξ),

где κ1,2 – некоторые положительные числа. В выражении для Z0+ выбираем κ, подчиненное условию

0 < κ < min(κ1, κ2). (23)

Тогда при ξ и τ, стремящихся к бесконечности, знак L(Z) определяется коэффициентом при Z, который
равен

a2
κ

2 + κ − 3λ2.

При ξ и τ, стремящихся к бесконечности, этот коэффициент

a2
κ

2 + κ − 3λ2 → a2
κ

2 + κ − 3ū2
0.

Последнее выражение будет отрицательным:

a2
κ

2 + κ − 3ū2
0 < 0,

при следующем условии на выбор κ:

0 < κ <

√︀
1 + 12ū2

0 − 1
2a2 .

Корректируем это с (23) и получаем

0 < κ < min

(︃
κ1, κ2,

√︀
1 + 12ū2

0 − 1
2a2

)︃
. (24)

При ξ и τ, стремящихся к бесконечности, L(Z) эквивалентно величине

L(Z) ∼ (a2
κ

2 + κ − 3ū2
0)Z < 0,
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поэтому существует положительное число ρ0 такое, что в области

Ω0 = {(ξ, τ)| ξ ≥ ρ0, τ ≥ ρ0}

выполняется неравенство L(Z0+) ≤ 0, и, таким образом, функция вида

Z0+ = r exp(−κ(ξ + τ))

является верхним барьером задачи (14)–(16) в области Ω0. Лемма 4 доказана.

Как и ранее оставшуюся часть области R2
+ разбиваем на две подобласти

Ω1 = {(ξ, τ)| ξ ≥ τ, 0 ≤ τ ≤ ρ0} и Ω2 = {(ξ, τ)| 0 ≤ ξ ≤ ρ0, τ ≥ ξ}.

Лемма 5. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) верхним барьером задачи (14)–(16) в области Ω1 является функция вида

Z1+(ξ, τ) = h(τ) exp(−κξ),

где κ – достаточно малое положительное число, а функция h(τ) на промежутке [0, ρ0] обладает свойствами

h(τ) > 0, h′(τ) > 0, h′′(τ) < 0. (25)

Доказательство. Требуется доказать,что L(Z1+) ≤ 0. Пусть

s = Π0(0, τ), t = Q0(ξ, 0), Z = Z1+, λ = ū0 + s + t.

При таких обозначениях имеем

L(Z) = a2 ∂
2Z
∂ξ2 −

∂Z
∂τ
− F(λ + Z) + F(ū0 + s) + F(ū0 + t) =

= a2
κ

2Z − h′(τ) exp(−κξ) − 3st(ū0 + λ) − 3λ2Z − 3λZ2 − Z3 =

=

(︂
a2
κ

2 −
h′(τ)
h(τ)

)︂
Z − 3st(ū0 + λ)

exp(κξ)
h(τ)

Z − 3λ2Z − 3λZ2 − Z3 =

=

(︂
a2
κ

2 −
h′(τ)
h(τ)

− 3st(ū0 + λ)
exp(κξ)

h(τ)
− 3λ2

)︂
Z − 3λZ2 − Z3 =

= −Z
[︂
−

(︂
a2
κ

2 −
h′(τ)
h(τ)

− 3st(ū0 + λ)
exp(κξ)

h(τ)
− 3λ2

)︂
+ 3λZ + Z2

]︂
=

= −Z
[︂

Z2 + 3λZ +
(︂

h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
+ 3λ2 − a2

κ
2
)︂]︂
.

Обозначим выражение, стоящее в квадратных скобках, через H(Z):

H(Z) = Z2 + 3λZ + q,

где q =
h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
+ 3λ2 − a2

κ
2.

Требуется доказать, что H(Z) ≥ 0. Сначала добьемся положительности q. Имеем

q ≥
h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
− a2

κ
2 =

1
h(τ)

[︀
h′(τ) + 3st(ū0 + λ) exp(κξ)

]︀
− a2

κ
2.

Чтобы удовлетворить неравенству

h′(τ) + 3st(ū0 + λ) exp(κξ) > 0,
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воспользуемся оценками
0 < s = Π0(0, τ) ≤ (φ − ū0)exp(−κ1τ),

0 < t = Q0(ξ, 0) ≤ (φ − ū0)exp(−κ2ξ),

где κ1,2 – некоторые положительные числа. Считая, что

0 < κ < min(κ1, κ2), (26)

имеем
0 < t exp(κξ) ≤ (φ − ū0)exp(−κ2ξ) exp(κξ) = (φ − ū0)exp(−(κ2 − κ)ξ) < φ − ū0.

Величина
0 < −(ū0 + λ) < −2ū0.

Таким образом,
0 < −3st(ū0 + λ) exp(κξ) < −6ū0(φ − ū0)2,

или
3st(ū0 + λ) exp(κξ) > 6ū0(φ − ū0)2,

поэтому функцию h(τ) подчиняем условию

h′(τ) + 3st(ū0 + λ) exp(κξ) > h′(τ) + 6ū0(φ − ū0)2 > 0.

Учитывая, что h′(τ) убывает на промежутке [0, ρ0] , требуем, чтобы

h′(ρ0) + 6ū0(φ − ū0)2 > 0. (27)

Теперь, чтобы q было положительным, нужно скорректировать выбор κ:

q ≥
1

h(τ)
[︀
h′(τ) + 3st(ū0 + λ) exp(κξ)

]︀
− a2

κ
2 ≥

1
h(ρ0)

[︀
h′(ρ0) + 6ū0(φ − ū0)2]︀ − a2

κ
2 ≥ δ > 0

при условии

0 < a2
κ

2 <
1

h(ρ0)
[︀
h′(ρ0) + 6ū0(φ − ū0)2]︀ − δ,

или

0 < κ <
1
a

√︃
1

h(ρ0)
[︀
h′(ρ0) + 6ū0(φ − ū0)2

]︀
− δ ,

где δ – какое-либо число из промежутка

0 < δ <
1

h(ρ0)
[︀
h′(ρ0) + 6ū0(φ − ū0)2]︀ . (28)

Выбор κ корректируем с условием (26):

0 < κ < min

(︃
κ1, κ2,

1
a

√︃
1

h(ρ0)
[︀
h′(ρ0) + 6ū0(φ − ū0)2

]︀
− δ

)︃
.

При наложенных выше условиях дискриминант квадратного трехчлена H(Z) равен

D = 9λ2 − 4q = 9λ2 − 4
(︂

h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
+ 3λ2 − a2

κ
2
)︂
=

= −3λ2 − 4
(︂

h′(τ)
h(τ)

+ 3st(ū0 + λ)
exp(κξ)

h(τ)
− a2

κ
2
)︂
< 0.

Таким образом, H(Z) > 0, а L(Z) < 0. Лемма 5 доказана.
В областиΩ2 верхний барьер строится симметрично барьеру из областиΩ1, и справедливо следующее утвер-

ждение.
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Лемма 6. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) верхним барьером задачи (14)–(16) в области Ω2 является функция

Z2+(ξ, τ) = Z1+(τ, ξ) = h(ξ) exp(−κτ),

где Z1+(ξ, τ) – функция из леммы 5.
Аналогично теореме 2 получается следующее утверждение.
Теорема 3. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) задача (14)–(16) имеет верхнее решение Z+(ξ, τ), удовлетворяющее экспоненциальной оценке
убывания вида

0 < Z+(ξ, τ) ≤ Cexp(−κ(ξ + τ)), (29)

где C и κ – некоторые положительные числа.
Применение метода верхних и нижних решений и учет оценок (22) и (29) позволяют доказать следующее

утверждение.
Теорема 4. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) задача (14)–(16) имеет решение P0(ξ, τ), удовлетворяющее экспоненциальной оценке убывания
вида

|P0(ξ, τ)| ≤ Cexp(−κ(ξ + τ)), (30)

где C и κ – некоторые положительные числа.
Последующие члены угловой части асимптотики Pk(ξ, τ), k ≥ 1, определяются из линейных задач (10)–(12),

рассматриваемых в области R2
+:

a2 ∂
2Pk

∂ξ2 −
∂Pk

∂τ
= F′(ū0 + Π0 + Q0 + P0)Pk + hk,

Pk(0, τ) = −Πk(0, τ), Pk(ξ, 0) = −Qk(ξ, 0),

Pk(ξ, τ)→ 0 при ξ + τ→ ∞,

где неоднородности hk = hk(ξ, τ) удовлетворяют экспоненциальным оценкам вида

|hk(ξ, τ)| ≤ Cexp(−κ(ξ + τ)),

если подобным оценкам удовлетворяют функции P0, . . . , Pk−1. Здесь C и κ – некоторые положительные числа.
В силу оценок для функцийΠ0, Q0 и P0 можно гарантировать существование положительного числаϱ такого,

что при ξ + τ ≥ ϱ значения ū0 + Π0 + Q0 + P0 будут ≤ −δ, где δ – некоторое положительное число. При таких
значениях переменных ξ, τ в силу свойств функции F коэффициент F′(ū0 +Π0 +Q0 + P0) будет положительным
и отграниченным от нуля:

F′(ū0 + Π0 + Q0 + P0) ≥ F′(−δ) > 0.

Это обстоятельство позволяет использовать результаты работы [15] и доказать следующее утверждение.
Теорема 5. Если в точке (0, 0) прямоугольника Ω функция F(u) = F(u, 0, 0, 0) имеет вид

F(u) = u3 − ū3
0, где число ū0 = ū0(0, 0) < 0,

то при условии (17) задачи (10)–(12) имеют решения Pk(ξ, τ), которые удовлетворяют экспоненциальным оценкам
убывания вида (30).

Задачи для угловых погранфункций P*k(ξ*, τ), k ≥ 0, ставятся и решаются аналогично. Асимптотический
ряд (5) оказывается полностью построенным. Остается обосновать асимптотическую сходимость этого ряда к
решению задачи (1)–(3).
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Теорема 6. Пусть выполнены условия 1–5 и в угловых точках (k, 0) прямоугольника Ω, где k = 0 или 1, функция
F(u) = F(u, k, 0, 0) имеет вид

F(u) = u3 − ū3
0, где числа ū0 = ū0(k, 0) < 0.

Если граничные значения φ = φ(k) удовлетворяют условию

ū0

2
< φ < 0,

то для достаточно малых ε задача (1)–(3) имеет решение u(x, t, ε), для которого ряд

∞∑︁
k=0

ε
k
(︁

ūk(x, t) + Πk(x, τ) + Qk(ξ, t) + Q*k(ξ*, t) + Pk(ξ, τ) + P*k(ξ*, τ)
)︁

является асимптотическим представлением при ε→ 0 в замкнутом прямоугольнике Ω.
Доказательство теоремы основано на разрешимости задач для пограничных функцийΠk, Qk, Q*k, Pk и P*k при

k ≥ 1 и повторяет доказательство соответствующей теоремы из работы [3]. При этом используется универсаль-
ный метод дифференциальных неравенств (см. [10]).

Замечание 2. Функция F в различных угловых точках не обязательно должна иметь один и тот же вид. Все
результаты работ [3]–[9] сохраняются, если в каждой угловой точке функция F имеет один из рассмотренных
в этих работах вид.

ЗАКЛЮЧЕНИЕ

В работе получено описание углового пограничного слоя для задач с кубическими нелинейностями при
условии, что граничные значения берутся вплоть до точки перегиба. Основной проблемой было доказательство
разрешимости нелинейных краевых задач. В отличие от предыдущих работ это потребовало конструирования
более сложных барьерных функций.
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Abstract. In the rectangle Ω = {(x, t) | 0 < x < 1, 0 < t < T } the initial boundary value problem for the
singularly perturbed parabolic equation

ε
2
(︂

a2 ∂
2u
∂x2 −

∂u
∂t

)︂
= F(u, x, t, ε), (x, t) ∈ Ω,

u(x, 0, ε) = φ(x), 0 ≤ x ≤ 1, u(0, t, ε) = ψ1(t), u(1, t, ε) = ψ2(t), 0 ≤ t ≤ T.

is considered. It is assumed that at the angular points (k, 0) of the rectangleΩ, where k = 0 or 1, the function
F(u) = F(u, k, 0, 0) takes the form

F(u) = u3 − u3
0, где u0 = u0(k) < 0.

The nonlinear method of angular boundary functions is used to construct the asymptotics of the solution to
the problem. Earlier, we considered the case when the boundary value of φ at the angular points is separated
from the inflection point u = 0 by the condition

u0(k) < φ(k) ≤
u0(k)

2
< 0,

at which functions of the “simplest” form suitable in the entire domain in question fitted to the role of
barrier functions. In this work, the case

u0(k)
2
< φ(k) < 0

is considered, where the domain has to be divided into parts, the barrier functions have to be constructed
in each subdomain taking into account their continuous junction at the common boundaries of the
subdomains, and then the piecewise continuous lower and upper solutions have to be smoothed. As a result,
a complete asymptotic expansion of the solution when ε → 0 is obtained and its uniformity in the closed
rectangle is justified.

Keywords: boundary layer, asymptotic approximation, singularly perturbed equation
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