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1. INTRODUCTION

Three-dimensional small-amplitude disturbances against a main laminar flow are of interest in numerical studies of
boundary-layer instabilities. Equations governing the evolution of such disturbances are considered on the half-line y > 0,
where y is the wall-normal coordinate, with the boundary conditions

u = v = w = 0 at y = 0, y→ +∞ (1.1)

for the velocity components u, v and w (see, e.g., [1–3]). The boundary conditions (1.1) represent the no-slip condition
at the flow-exposed surface y = 0 and decaying of disturbances at far distance from the surface. This paper devotes to
approximations on y of such problems.

Spectral methods, including collocation and Galerkin–collocation methods, are a good choice for the approximation
of governing equations, since the equations are linear while sought disturbances are smooth functions of y. Within the
collocation method, the solution is approximated by a series of infinitely-differentiable functions with a non-finite
supply; and the expansion coefficients are determined by requiring the equations to be satisfied at given grid nodes called
collocation points. Within the Galerkin–collocation method, the equations are approximated in the weak form, Lagrange
interpolation functions associated with some grid are used as trial and test functions, and the inner products are computed
by a high-order quadrature formula associated with the same grid. Note that the Galerkin–collocation method is often
called the Galerkin method with numerical integration [4]. For problems considered on a finite interval, these spectral
methods are discussed, for example, in [4–6]; and procedures from the well-known software packages [7, 8] can be used
for the numerical implementation of these methods.

There are three main approaches for approximating problems considered on the half-line y > 0 under the boundary
conditions (1.1). The first one introduces an artificial boundary at finite but large distance ymax from the surface. Then
the equations are considered on the interval (0, ymax) under some (e.g., zero or asymptotic [9]) boundary conditions at
y = ymax instead of those at infinity. Coupled with a spectral method for the finite interval, this approach is widely used
in numerical studies of boundary-layer instabilities (see [3] and references therein). This approach requires choosing the
sufficient value of ymax for a particular problem, and ymax might depend on flow parameters. Note that boundary conditions
for the velocity components at any y = ymax might allow for solutions that do not decay as y → +∞. For boundary-layer
stability problems, solutions with such a behavior are known; these solutions correspond to the modes of continuous
spectrum [1, 3], with their physical relevance being still an open question.

The second approach uses a mapping that transform a system of functions with well-established approximation
properties on a finite interval (for example, the Lagrange interpolation polynomials associated with the Chebyshev points)
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ON SPECTRAL APPROXIMATIONS FOR THE STABILITY ANALYSIS OF BOUNDARY LAYERS 11

into that on a half-line [4, 10]. The approximation properties of such mapped systems of functions are discussed in [11].
From [12,13] onwards, various mappings are compared for model problems. This approach is used in hydrodynamic and
aerodynamic applications [10, 14, 15].

The third approach [11,16] uses the Laguerre functions L̂k(y) = Lk(y) exp(−y/2), where Lk is the Laguerre polynomial
of degree k. As to our knowledge, spectral methods based on the Laguerre functions have not been previously used for
studying boundary-layer instabilities.

In [11] the convergence of the spectral Galerkin method based on either mapped systems of polynomials or the
Laguerre functions is studied theoretically. Upper bounds on the approximation errors are obtained for both type of
methods and then verified on model elliptic equations. Note that these bounds are obtained in different norms. For the
method based on the Laguerre functions, the norm is the usual (i.e., with the unit weight function) ℒ2-norm over the
half-line; this norm has a clear physical interpretation in the study of boundary-layer instabilities — it is the disturbance
kinetic energy density. For the method based on mapped systems of polynomials, that is the weighted norm determined
by the mapping. The work [11] provides a number of examples, where either the first method converges faster than the
second one, or the second one converges faster than the first one, or both methods show close results. It is of interest to
compare these methods for boundary-layer stability problems.

The present work is organized as follows. In Section 2, we describe the approximation by the Galerkin–collocation
method based on the Laguerre functions of the equations governing evolution of small-amplitude disturbances of viscous
incompressible boundary layers. Section 3 devotes to a robust numerical implementation of this method. Section 4
compares the proposed method with the collocation method with mappings for the stability analysis of the Blasius and
Ekman layers. Section 5 summarizes the results.

Throughout this paper, ‖ · ‖2 denotes the 2-norm for vectors and matrices, the superscripts T and * denote the symbols
of transposition and conjugate transposition respectively, and δi j denotes the Kronecker delta.

2. APPROXIMATION OF PROBLEMS ARISING WITHIN THE STABILITY ANALYSIS OF BOUNDARY
LAYERS

In the Cartesian coordinates, x (streamwise), y (wall-normal) and z (spanwise), consider a flow of a viscous
incompressible fluid over the flat surface y = 0. Against the background of a main laminar flow, we consider three-
dimensional small-amplitude time-dependent disturbances which are represented as follows

(u′, v′,w′, p′) = (u, v,w, p)eiαx+iγz, (2.1)

where u, v, w, and p are the complex-valued amplitudes of the streamwise, wall-normal and spanwise velocity
components, and the pressure, respectively. The amplitudes depend only on y and t. Here t is the time, α is the streamwise
wavenumber, and γ is the spanwise wavenumber.

Two problems are considered in this paper to present and compare approximation methods in the wall-normal
direction y.

The first problem is the temporal stability analysis of the Blasius layer under the local-parallel assumption. In this
case, it is assumed that the linear dimensionless equations governing the evolution of small-amplitude disturbances are as
follows

∂u
∂t
+ iαUBu +

dUB

dy
v + iαp −

1
Re
∆αγu = 0,

∂v
∂t
+ iαUBv +

∂p
∂y
−

1
Re
∆αγv = 0,

∂w
∂t
+ iαUBw + iγp −

1
Re
∆αγw = 0,

iαu +
∂v
∂y
+ iγw = 0,

(2.2)

where Re is the Reynolds number, and ∆αγ = −α2 + ∂2/∂y2 − γ2. The streamwise velocity UB(y) = d f /dy of the main flow
depends only on y; and f satisfies the Blasius equation

2
d3 f
dy3 +

d2 f
dy2 f = 0, f (0) = f ′(0) = 0, f ′(+∞) = 1,

which can be solved by standard numerical methods (see, e.g., references in [3]). A physical interpretation of the
equations (2.2) as well as the definition of the Reynolds number can be found in [2, 3].
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The second problem is the temporal stability analysis of the Ekman layer. In this case, it is assumed that the linear
dimensionless equations governing the evolution of small-amplitude disturbances are as follows

∂u
∂t
+ (iαUE + iγWE)u +

dUE

dy
v + iαp −

1
Re
∆αγu =

1
Ro

w,

∂v
∂t
+ (iαUE + iγWE)v +

∂p
∂y
−

1
Re
∆αγv = 0,

∂w
∂t
+ (iαUE + iγWE)w +

dWE

dy
v + iγp −

1
Re
∆αγw = −

1
Ro

u,

iαu +
∂v
∂y
+ iγw = 0,

(2.3)

where Re is the Reynolds number, and Ro = Re/2 is the Rossby number. The streamwise velocity UE(y) = 1−cos(y)e−y and
spanwise velocity WE(y) = sin(y)e−y of the main flow depend only on y and are known analytically. A physical interpretation
of the equations (2.3) as well as the definition of the Reynolds and Rossby numbers can be found in [14].

Within the stability analysis, the velocity components satisfy the boundary conditions (1.1) for both considered
problems. In addition, we consider the disturbance kinetic energy density

ℰ =

+∞∫︁
0

|u|2 + |v|2 + |w|2 dy (2.4)

as a physically-relevant measure of disturbance magnitude.

2.1. Approximation by the Galerkin–collocation method based on the Laguerre functions

Let us consider the equations (2.2) under the boundary conditions (1.1). Suppose ℒ2 is the space of complex-valued
functions square-integrable over the half-line y > 0. This space is equipped with the inner product and the norm that is
similar to the energy functional (2.4). Supposeℋ0 is the space, whose elements satisfy zero boundary condition at y = 0
and belong to ℒ2 together with their first derivatives. Let us multiply the momentum equations by fu, fv, fw ∈ ℋ0 and the
continuity equation by fp ∈ ℒ2; and integrate these equations over the half-line y > 0, using the integration by parts.
Thus, we obtain the weak form of the equations (2.2). We seek for u, v,w ∈ ℋ0 and p ∈ ℒ2 (at any fixed t) such that the
weak form of the equations (2.2) is valid for any fu, fv, fw ∈ ℋ0 and fp ∈ ℒ2.

Let Lk be the Laguerre polynomial of degree k. Suppose 0 = y0 < · · · < yn is the Laguerre–Gauss–Radau grid, whose
non-zero nodes are the roots of the derivative of Ln+1. The Laguerre–Gauss–Radau quadrature formula

+∞∫︁
0

f (y)e−y dy ≈
n∑︁

i=0

f (yi)κi, κi =
1

(n + 1)L2
n(yi)

associated with this grid is exact for any polynomial of degree 2n or less [17]. Then, the following quadrature formula is
valid

+∞∫︁
0

f (y) dy ≈
n∑︁

i=0

f (yi)κ̂i, κ̂i = κieyi . (2.5)

Suppose ℓi(y) are the Lagrange interpolation polynomials for the Laguerre–Gauss–Radau grid. Likewise, ℓ̄i(y) are
those for the grid y1 < · · · < yn. It is easy to see that

ℓi(y) =
Ln(y) − Ln+1(y)
(y − yi)Ln(yi)

. (2.6)

In the sequel, functions of the form

ψi(y) = ℓi(y)e−(y−yi)/2, i = 0, . . . , n,

ϕi(y) = ℓ̄i(y)e−(y−yi)/2, i = 1, . . . , n,
(2.7)

are called the Laguerre interpolation functions. The functions ψi(y) at 1 ≤ i ≤ n equal zero at y = 0. These functions
are used as trial functions for the velocity components, and as test functions for the momentum equations. The functions
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ϕi(y) are used as trial functions for the pressure, and as test functions for the continuity equation. The quadrature formula
(2.5) is used for computing the inner products.

Let us point out the approximation of some operators in the weak form of (2.2). Let gv be the approximation of a
function fromℋ0 byψi (i = 1, . . . , n), and gv be the column whose elements are the corresponding expansion coefficients.
Likewise, let gp be the approximation of a function from ℒ2 by ϕi (i = 1, . . . , n), and gp be the column whose elements
are the corresponding expansion coefficients. Then, the following equalities are valid

+∞∫︁
0

dgv

dy
dgv

dy
dy =

(︀
DT KDgv, gv

)︀
, (2.8)

+∞∫︁
0

gp
dgv

dy
dy =

(︀
DT KPgp, gv

)︀
,

+∞∫︁
0

dgv

dy
gp dy =

(︀
PT KDgv, gp

)︀
, (2.9)

where the Euclidean inner product is denoted by the braces, K is the diagonal matrix of order n + 1 whose entries are the
quadrature weights (2.5), D is the matrix of size (n + 1) × n whose entries are the derivatives of ψi(y) (i = 1, . . . , n) at the
Laguerre-Gauss-Radau nodes, and P is the matrix of size (n+ 1)× n whose entries are the values of ϕi(y) at the Laguerre-
Gauss-Radau nodes. Note that the equalities (2.8), (2.9) hold since the quadrature (2.5) is exact for any function of the
form p(y)e−y, where p(y) is a polynomial of degree 2n or less. The matrix D is called the differentiation matrix. The matrix
P is called the projection matrix; only ϕi(y0) have to be computed since ϕi(y j) = δi j at the interior nodes by definition.
The computation of the matrices D and P is discussed in Section 3.

As a result of the described approximation of the equations (2.2), we obtain a system of ordinary differential and
algebraic equations of the form

dv
dt
= Jv + Gp,

Fv = 0,
(2.10)

where v is the 3n-component column, whose elements represent the values of the velocity components at the interior
grid nodes. In (2.10), v is additionally scaled such that ‖v‖22 correspond to the energy functional (2.4). Here J, G, and
F are matrices of size 3n × 3n, 3n × n, and n × 3n, respectively. The ordinary differential equations in (2.10) correspond
to the momentum equations, while the algebraic equations correspond to the continuity equation. From (2.8) and (2.9),
it is easy to see that the discrete analogue of the Laplace operator is a symmetric negative-definite matrix as well as the
equality F = −G* is valid.

Similar to the polynomial interpolation, approximation properties of the functions (2.7) are determined by the
Lebesgue function Φ(y) and the Lebesgue constant LΦ

Φ(y) =
n∑︁

i=0

|ψi(y)|, LΦ = max
y>0
Φ(y). (2.11)

At given n, the function Φ(y) is equal to 1 at y = yi and decays exponentially at y > yn. Figure 1 shows the function Φ(y)
at n = 32; it is qualitatively the same at other n. As for the polynomial interpolation, the Lebesgue constant LΦ increases
with n. Figure 1 shows that the increase of LΦ is at logarithmic rate. In addition, the increase of LΦ is compared to the
increase of the Lebesgue constant for polynomial interpolation at the Chebyshev points. It is shown that the values of LΦ
are slightly smaller, while the growth rate is similar.

2.2. Scaling for the stability analysis of boundary layers

Within the boundary-layer stability analysis, there are two characteristic wall-normal length scales — the thickness
of the laminar boundary layer yBL, and the finite height ymax such that disturbances might be regarded as negligible at
y > ymax. The value of yBL can be found before the stability analysis, using only the main flow data (see introduction
in [18] and references therein). In contrast, the value of ymax can be found only within the stability analysis by studying
the convergence of the sought disturbances with increasing ymax. We also note that some disturbances (e.g., Tollmien–
Schlichting waves) can extend significantly above the boundary layer, i.e., ymax can be much larger than yBL. This physical
discussion leads to the following requirements. The grid nodes should be separated such that both the boundary-layer
domain (0 < y < yBL) and its outside are covered. In addition, as n increases, both the number of nodes inside and outside
the boundary layer must increase.

Therefore, the Laguerre–Gauss–Rado grid 0 = y0 < · · · < yn should be scaled, since these nodes are distributed along
the entire half-line y ≥ 0, with yn increasing with n. For example, one can satisfy these requirements by the scaling

yi := yi/σ, κ̂i := κ̂i/σ, ψ
′
j(y) := σψ′j(y), (2.12)
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Figure 1. On the left: the Lebesgue functionΦ(y) (2.11) at n = 32. The Laguerre–Gauss–Radau nodes are marked with green dots. On
the right: the increase of LΦ (green solid) with n, and that of the Lebesgue constant for the polynomial interpolation for the Chebyshev
grid (black dashed).
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Figure 2. On the left: the Laguerre–Gauss–Radau nodes under the scaling (2.12) at fixed yBL = 5 and at n = 2k, where k = 4, . . . , 9.
The independent variable y is stretched along the vertical axis. On the right: the quadrature weights κ̂i (2.5) under the scaling (2.12) at
the same yBL and n.

where σ = ym/yBL is a scaling factor, and m is the integer part of n/2. This scaling means that the half of the grid nodes
lies inside the boundary layer. An advantage of (2.12) is that this scaling does not depend on ymax. Note that this is not the
only possible way of scaling. For example, one can additionally adjust the parameter m for a particular problem.

Figure 2 shows the Laguerre–Gauss–Radau nodes yi and weights κ̂i under the scaling (2.12) at various n with yBL
being fixed. Note that yn increases slowly with n and κ̂n decreases with n under the scaling (2.12).

2.3. Approximation by the collocation method with mappings

Let us briefly describe the approximation of the equations (2.2) under the boundary conditions (1.1) by collocation
method.

Let −1 = s0 < · · · < sn+1 = 1 be the Chebyshev points, i.e., si = − cos (πi/(n + 1)). Suppose li(s) are the Lagrange
interpolation polynomials for this grid, and l̄i(s) are those for the grid s1 < · · · < sn. Let y = g(s) (s = g−1(y)) be a smooth
monotonic function that ensures an one-to-one mapping between the interval −1 ≤ s ≤ 1 and the half-line y ≥ 0 such
that g(−1) = 0, g(0) = yBL, and g(1) = +∞. Such a mapping guarantees that the half of the grid nodes yg

i = g(si) lies
inside the boundary layer, similarly to the scaling (2.12). Then we use the functions ψg

i (y) = li(g−1(y)) as basis functions
for the velocity components and the functions ϕg

i (y) = l̄i(g−1(y)) as basis functions for the pressure. The functions ψg
i (y)
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at 1 ≤ i ≤ n satisfy zero boundary conditions at y = 0 and y → +∞. The approximation properties of such functions are
discussed in [11].

For computing the energy functional (2.4), we use the quadrature formula

+∞∫︁
0

f (y) dy =

1∫︁
−1

f (g(s))
dg
ds

ds ≈
n∑︁

i=0

f (yg
i )κ̂i,

where κ̂i = κi(dg/ds(si)), and κi are the weights of the Clenshaw–Curtis quadrature [6]. This formula is exact for any
functions of the form l(g−1(y)), where l is a polynomial of degree n or less. The values of the derivatives of ψg

i (y) and ϕg
i (y)

at the grid nodes can be computed by the procedures from [7] or [8], coupled with the chain rule.
As a result of the described approximation of the equations (2.2), we obtain a system of ordinary differential and

algebraic equations of the form (2.10). Note that the collocation method does not ensure that the discrete analogue of the
Laplace operator is a symmetric negative-definite matrix. In addition, the equality F = −G* does not hold, in general.

As a mapping, the following ones are used in the present paper

g(s) = yBL tan
(︁
π

4
(1 + s)

)︁
, g−1(y) =

4
π

arctan
(︂

y
yBL

)︂
− 1, (2.13)

g(s) = yBL
1 + s
1 − s

, g−1(y) =
y − yBL

y + yBL
, (2.14)

g(s) = −
yBL

ln(2)
ln
(︂

1 − s
2

)︂
, g−1(y) = 1 − 2−y/yBL+1. (2.15)

The algebraic (2.14) and exponential (2.15) mappings are known [4]; and the mapping with the tangent function (2.13) is
currently implemented in LOTRAN software package [15], which is designed for predicting an onset of laminar–turbulent
transition in industrial applications.

Figure 3 shows the streamwise velocity UB(y) of the Blasius layer and the streamwise UE(y) and spanwise WE(y)
velocities of the Ekman layer. For both considered main flows, the typical values of yBL (see, [9,14]) are marked, while the
values of ymax correspond to the upper limits of the subfigures. In addition, Figure 3 shows the Laguerre–Gauss–Radau
nodes under the scaling (2.12), and the grid nodes yg

i obtained by either the mapping (2.13), (2.14), or (2.15).

3. NUMERICAL IMPLEMENTATION OF THE GALERKIN–COLLOCATION METHOD

To implement the approximation method described in Section 2.1, one has to compute the nodes yi and weights κ̂i of
the quadrature formula (2.5), the derivatives of ψi(y) (2.7) at the grid nodes, and the values of ϕi(y) (2.7) at y = 0. In this
section, we provide an algorithm for computing these quantities; the proposed algorithm is stable, including the case of
large n.
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Figure 3. The independent variable y is along the vertical axis. On the left: the Blasius velocity profile UB(y) (yBL = 4.27, ymax = 40).
On the right: the Ekman velocity profiles, UE(y) and WE(y) (yBL = 5, ymax = 20). The Laguerre–Gauss–Radau nodes under the scaling
(2.12) (green dots) and the Chebyshev points under the mappings (2.13), (2.14), and (2.15) (red, blue and pink dots, respectively) at
n = 32.
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By definition [19], the Laguerre polynomials are orthogonal in the inner product

+∞∫︁
0

Lk(y)Lm(y)e−y dy = δkm

with the exponential weight function. They satisfy the following three-term relations

L0(y) = 1, L1(y) = 1 − y,

−kLk−1(y) + (2k + 1)Lk(y) − (k + 1)Lk+1(y) = yLk(y),
(3.1)

and can be represented as

Lk(y) =
ey

k!
dk
(︀
e−yyk

)︀
dyk . (3.2)

In addition, the Laguerre polynomials satisfy the relations

L′n+1(y) − L′n(y) = −Ln(y), (3.3)

yL′n+1(y) = (n + 1)(Ln+1(y) − Ln(y)), (3.4)

whose derivation from (3.1) and (3.2) is straightforward, see [20].

It is known [17] that the Laguerre–Gauss–Radau nodes yi are eigenvalues of the symmetric tridiagonal matrix⎡⎢⎢⎢⎢⎢⎣
1 −1 0
−1 3 −2

. . .
. . .

. . .
−(n − 1) 2n − 1 −n

0 −n n

⎤⎥⎥⎥⎥⎥⎦ . (3.5)

This allows for the robust computation of yi.

3.1. Some results

The quadrature weights κ̂i (2.5) are determined by Ln(yi), which can be computed by the three-term relations (3.1).
At large n and i, the values of |Ln(yi)| appear to be very large (up to the machine infinity), and the values of κi appear to
be very small (up to the machine zero). Therefore, the stable computation of κ̂i = κieyi is an issue. At the same time, the
values of κ̂i are bounded from below since the Laguerre functions are bounded, |L̂n(y)| ≤ 1, at any n and y [16].

We propose to compute the weights κ̂i (2.5) by

κ̂i =
exp (yi − 2 ln(|Ln(yi)|))

n + 1
, (3.6)

with an additional scaling at computing Ln(yi) by (3.1). If we have |Lk(yi)| > c at some k < n, where c is a given threshold
parameter, then we divide the previously computed Lk(yi) and Lk−1(yi) by c and keep using the three-term relation. This
scaling by c is done whenever the result exceeds c in absolute value. As a result, we have ln(|Ln(yi)|) = nc ln(c)+ ln(|L̃n(yi)|),
where nc is the number of fractions done, and L̃n(yi) is the value obtained by the procedure. Numerical experiments show
the overall procedure is robust to round-off errors at large n and i; the computed values of κ̂i up to n = 512 are shown in
Figure 2.

Let us consider the numerical interpolation by the Laguerre interpolation functions (2.7). The following statement is
valid.

Lemma 1. Suppose the function f (y) is equal to fi at some grid 0 ≤ ỹ1 < · · · < ỹn. Then, the interpolant In( f ) constructed with
the functions of the form

ℓ̃i(y)e−(y−ỹi)/2,

where ℓ̃i(y) are the Lagrange interpolation polynomials for this grid, is represented as

In( f ) =

(︃
n∑︁

i=1

λ̂i

y − ỹi
fi

)︃⧸︁(︃ n∑︁
i=1

λ̂ie(y−ỹi)/2

y − ỹi

)︃
, (3.7)

where λ̂i =
eỹi/2∏︀

k ̸=i
(ỹi − ỹk)

.
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Proof. It is straightforward that the following representation

In( f ) = ℓ̃(y)e−y/2
n∑︁

i=1

λ̂i

y − yi
fi (3.8)

is valid, where ℓ̃(y) =
n∏︀

i=1
(y − ỹi). Then, (3.8) and

1 ≡
n∑︁

i=1

ℓ̃i(y) = ℓ̃(y)
n∑︁

i=1

λ̂ie−ỹi/2

y − ỹi
,

end the proof.

As for the polynomial interpolation (see, e.g., [6]), the representation (3.7) is called the barycentric form of the
interpolant, while λ̂i are called the barycentric weights. The barycentric weights can be computed in a robust way due
to the following statement.

Theorem 1. Suppose 0 = y0 < · · · < yn are the Laguerre–Gauss–Radau nodes, and κ̂i are the quadrature weights in (2.5).
Then, the barycentric weights λ̂i for this grid, and those λ̂0

i for the grid y1 < · · · < yn, are represented as

λ̂i = c(n)(−1)i
√︀
κ̂i, (3.9)

λ̂
0
i = c(n)(−1)iyi

√︀
κ̂i, (3.10)

where

c(n) =
(−1)n

√
n + 1

(n + 1)!
.

Proof. Let us prove (3.10) first. The polynomial ℓ0(y) =
n∏︀

i=1
(y − yi) has the same roots as L′n+1(y); therefore, these

polynomials differ only by a multiplicative factor. Using that the leading coefficient of Ln+1(y) is equal to (−1)n+1/(n+ 1)!,
we obtain that

λ̂
0
i =

eyi/2

ℓ′0(yi)
=

eyi/2

(−1)n+1n!L′′n+1(yi)
. (3.11)

For the interior Laguerre–Gauss–Radau nodes, it is valid that

yiL′′n+1(yi) = −(n + 1)L′n(yi) = −(n + 1)Ln(yi), (3.12)

where the left equality is obtained by taking the first derivative of (3.4), and the right one follows from (3.3). Substituting
(3.12) into (3.11) and using the definition of κ̂i (2.5), we obtain the statement (3.10) up to a sign. To end the proof, note
that λ̂0

i have to change the sign, with λ̂0
n > 0.

To prove (3.9), note that

ℓ(y) =
n∏︁

i=0

(y − yi) = yℓ0(y),

and therefore

λ̂i =
eyi/2

ℓ′(yi)
=

eyi/2

ℓ0(yi) + yiℓ
′
0(yi)
. (3.13)

For the interior grid nodes the first term in the denominator of (3.13) equals 0, while the second term is expressed in terms
of λ̂i; those lead to (3.9) at i > 0. For the boundary node y0 = 0, we have ℓ(0) = (−1)n+1n!L′n+1(0). To end the proof, note
that the Laguerre polynomials satisfy L′k(0) = −k, and therefore λ̂0

0 = (−1)n/(n + 1)!.

Note that the statement similar to (3.9) is proven in [21] for the polynomial interpolation for the Laguerre–Gauss–Radau
grid.

The barycentric weights λ̂i and λ̂0
i contain the multiplicative factor c(n), which decays at very large rate with increasing

n. At some n, this factor becomes smaller than the machine zero. However, there is no need to compute c(n) for the
interpolant representation (3.7), since the barycentric weights are involved both in the nominator and denominator.
Thus, the interpolant representation (3.7) with the barycentric weights computed by Theorem 1 allow for the numerical
interpolation from the Laguerre–Gauss-Radau grid to another grid. In addition, substituting (3.10) into (3.7) at the point
y = 0, the following corollary is obtained.
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Corollary 1. Suppose 0 < y1 < · · · < yn are the interior Laguerre–Gauss–Radau nodes, κ̂ j are the quadrature weights in
(2.5) corresponding to these nodes, and ϕ j(y) are the Laguerre interpolation functions (2.7) for this grid. Then,

ϕ j(0) =
(−1) j

√︀
κ̂ j

n∑︀
j=1

(−1) j
√︀
κ̂ je−y j/2

.

One can also derive the explicit formula for the derivatives of the interpolation Laguerre functions ψ j(y) (2.7) at the
Laguerre–Gauss–Radau nodes. Note that such formula is given in [16], Eq. (3.17), but without a proof.

Theorem 2. Suppose 0 = y0 < · · · < yn are the Laguerre–Gauss–Radau nodes, κ̂i are the quadrature weights in (2.5), and
ψ j(y) are the Laguerre interpolating functions (2.7) for this grid. Then

ψ
′
j(yi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)i+ j

√︀
κ̂ j

√
κ̂i(yi − y j)

, i ̸= j,

0, i = j ̸= 0,

−
n + 1

2
, i = j = 0.

Proof. The derivative of the function ψ j(y) (2.7) is as follows

ψ
′
j(y) =

(︂
ℓ′j(y) −

1
2
ℓ j(y)

)︂
e−(y−y j)/2, (3.14)

where ℓ j(y) are the Lagrange interpolation polynomials. By (2.6), it is valid that

(y − y j)ℓ j(y) =
Ln(y) − Ln+1(y)

Ln(y j)
. (3.15)

By taking the derivative of (3.15), we obtain that

ℓ′j(yi) =
Ln(yi)

(yi − y j)Ln(y j)

at i ̸= j. Substituting this expression to (3.14) and using the result for the barycentric weights (3.9), we prove the theorem
at i ̸= j.

By taking the second derivative of (3.15), we obtain that

2ℓ′j(y j) =
L′n(y j)
Ln(y j)

.

At y0 = 0, it is valid that Ln(0) = 1 and L′n(0) = −n. At other nodes y j, it is valid that L′n(y j) = Ln(y j) (3.3). Thus,

2ℓ′j(y j) =

{︃
1, j ̸= 0,
−n, j = 0.

(3.16)

The substitution of (3.16) into (3.14) ends the proof at i = j.

To sum up, the Galerkin–collocation method based on the Laguerre functions can be implemented as follows. The
Laguerre–Gauss–Radau nodes yi are computed as the eigenvalues of (3.5). The quadrature weights κ̂i associated with
this grid are computed by (3.6) with an additional scaling while using the three-term relations (3.1). Then, the values and
derivatives of the functions (2.7) at the grid nodes are computed, see Corollary 1 and Theorem 2. For the interpolation of
a grid function given at the nodes yi to another grid, the barycentric formula (3.7) is used, where the barycentric weights
are computed by Theorem 1; the multiplicative factor c(n) is common for all barycentric weights at given n, therefore there
is no need to compute it. The proposed algorithm performs robustly, including the case of large n.
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4. NUMERICAL EXPERIMENTS

As a result of the approximation of either the system (2.2) or (2.3) under the boundary conditions (1.1) by either the
Galerkin–collocation method from Section 2.1 or the collocation method from Section 2.3, we obtain a differential-
algebraic system of the form (2.10).

Note that v lies in the kernel of F. Let QF be a rectangular matrix, whose columns form an orthonormal basis in the
kernel of F. Likewise, let QG be a rectangular matrix, whose columns form an orthonormal basis in the kernel of G*.
Under an additional assumption that both F, G and Q*GQF are of full rank, the system (2.10) is equivalent to the system of
ordinary differential equations

dq
dt
= Hq, (4.17)

whereq = QFv, and H =
(︀
Q*GQF

)︀−1 Q*GJQF . The detailed justification of such a reduction of differential-algebraic systems
is given in [22]; the assumption made is valid for the considered problems. Note that the approximation by the Galerkin–
collocation method ensures that F = −G*, and therefore QF = QG. It is also worth noting that ‖q‖22 = ‖v‖

2
2 is the discrete

analogue of the energy functional (2.4).
Within the numerical stability analysis, the eigenvalue of H with the largest real part is of the most interest [2, 3]. This

eigenvalue is called the leading eigenvalue, and the corresponding eigenvector is called the leading eigenvector; we denote
the leading eigenvalue by λmax. The another quantity of physical interest [2, 3] is

Γmax = max
0≤t≤T

‖ exp{tH}‖22,

which is called the maximum energy amplification. The quantity Γmax represents the maximum possible growth of the
dusturbance kinetic energy density at given time period t ∈ [0,T ]. In case the matrix H is non-normal, the value of Γmax
might significantly exceed the growth of the leading eigenvector exp (2λmaxT ) [2, 3]; in this case, the initial disturbance
at which Γmax is achieved (which is called the optimal disturbance [2, 3]) usually differs from the leading eigenvector.
The maximum energy amplification Γmax can be computed by the efficient matrix algorithm [23] based on a low-rank
approximation; this algorithm guarantees the result with a given accuracy.

To compare the approximation methods, we study the convergence of both scalar characteristics λmax and Γmax.
Comparing the methods by the convergence of vector characteristics, namely either the leading eigenvector or the optimal
disturbance, could not be done quantitatively due to additional errors from interpolation from one grid to another.

For the considered test problems, the stability analysis can be performed only numerically. To establish the referential
values λ̂max and Γ̂max, we set the artificial boundary ymax with zero boundary conditions for the velocity components at
y = ymax and then approximate the equations by the Galerkin–collocation method with the Lagrange interpolation
polynomials for the Gauss–Lobatto grid as trial and test functions. The approximation properties of these basis functions
are well-established [4], while the method was widely used for hydrodynamic stability problems considered on finite
domains. Therefore, this method is reliable that is the most important for obtaining referential values. For boundary-
layer stability problems, this method is certainly inefficient, since the Gauss–Lobatto nodes are refined both to y = 0
and y = ymax, while the value of ymax has to be tuned manually. Tracking the convergence of the referential solution by
increasing n and ymax, we achieve the convergence of λ̂max and Γ̂max up to a desired precision.

As the first test problem, we perform temporal stability analysis of the Ekman layer (2.3). The Ekman layer could be
considered as the simplest model of atmospheric boundary layers, with its stability being studied in detail (see [14] and
references therein). Using the results of [14], we choose the parameter values as Re = 500, yBL = 5, α = −|k| sin(ε),
γ = |k| cos(ε), and T = 50, where |k| = 0.5, ε = π/9. The referential values of the leading eigenvalue λ̂max = 0.02375517 +
+ 0.026959526i and the maximum energy amplification Γ̂max = 207.14602 are computed at ymax = 20 and n = 128.

Figure 4 demonstrates the relative errors at computing λmax and Γmax for various approximation methods. All methods
show an exponential convergence rate of λmax with increasing n. However, only the Galerkin–collocation method based
on the Laguerre functions shows an exponential convergence rate of Γmax. Note that Γmax converges slightly faster than
λmax for this method. It is also worth noting that there are no significant differences between collocation methods at various
mappings. Additional experiments not presented in this paper show that these findings remain qualitatively the same at
increasing or decreasing the Reynolds number.

As the second test problem, we perform temporal stability analysis of the Blasius layer (2.2). This main flow could
be considered as the simplest model of aerodynamic boundary layers, with its stability being studied in detail (see [2, 3]
and references therein). Using the results of [9], we choose the parameter values as Re = 999, α = 0.25, and γ = 0 for
computing λmax; and the parameter values Re = 999, α = 0.3, γ = 1, T = 50 for computing Γmax. The typical boundary-
layer thickness is yBL = 4.27. The referential values of the leading eigenvalue λ̂max = 0.00213694 − 0.08843026i and the
maximum energy amplification Γ̂max = 279.334811 are computed at ymax = 40 and n = 256.
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Figure 4. The relative error at computing λmax (on the left) and Γmax (on the right) with increasing n for the Ekman layer. Results for
the Galerkin–collocation method based on the Laguerre functions with scaling (2.12) are marked with green. Those for the method
used to obtain referential values are marked with black. Those for the collocation methods with mappings (2.13), (2.14) and (2.15) are
marked with red, blue and pink, respectively.
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Figure 5. The relative error at computing λmax (on the left) and Γmax (on the right) with increasing n for the Blasius layer. The colors
mean the same as for Figure 4. In addition, results for the Galerkin–collocation method based on the Laguerre functions with scaling
(2.12) are shown at larger yBL = 5.5 (green dotted).

Figure 5 demonstrates the relative errors at computing λmax and Γmax for various approximation methods. The
collocation method shows an exponential convergence rate of λmax with increasing n; and there are no significant
differences between mappings used. In contrast, for the Galerkin–collocation method based on the Laguerre functions,
the accuracy that can be achieved is limited; nevertheless, the obtained accuracy might be more than enough in
applications. This issue is remedied by choosing a larger yBL, that is also shown in Figure 5. One can also improve the
scaling (2.12) by increasing the share of the nodes outside the boundary layer.

As for the Ekman layer, the Galerkin collocation method based on the Laguerre functions shows an exponential
convergence rate of Γmax, while the collocation method leads to a slower convergence of Γmax. This disadvantage of the
collocation method appears to be irremediable; and the reason is an ill approximation of the operator d2/dy2, which leads
to the presence of slowly damped unphysical solutions. The basis for this conclusion are as follows. First, it is observed
that convergence to the referential value Γ̂max for the collocation method is from above, i.e., Γmax > Γ̂max. Second, let
us consider the discrete analogue of the operator d2/dy2 on the half-line under zero boundary conditions at y = 0 and
y = +∞; denote this matrix by L. The collocation method, in general, does not ensure the symmetry of L, although in this
case it provides negative definiteness. Nevertheless, the matrix L resulted as the approximation by the collocation method
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has a large condition number (e.g., of order 109 at n = 32 at the mapping (2.13)), and the spectrum of L contains several
very small in absolute value negative eigenvalues corresponding to strongly oscillating eigenvectors. For comparison, L has
the conditional number of order 105 at n = 32, when approximated by the Galerkin–collocation method based on the
Laguerre functions.

5. SUMMARY

This paper proposes the Galerkin collocation method based on the Laguerre functions for approximating spectral
and boundary-value problems arising in studying boundary-layer instabilities. These problems considered on the half-
line y > 0, where y is the wall-normal coordinate. The robust numerical implementation of this method is proposed (see
Section 3), including the procedure for computing the weights of the Laguerre–Gauss–Radau quadrature formula, the
explicit expressions for values and derivatives of the Laguerre interpolation functions at the grid nodes, and the procedure
for numerical interpolation from the Laguerre–Gauss–Radau grid to another grid.

Within temporal stability analysis of the Blasius and Ekman layers, the proposed method is compared to the collocation
method with mappings; the latter method is often used for numerical analysis of boundary-layer instabilities. The
comparison is made at computing both the leading eigenvalue λmax and the maximum energy amplification Γmax. It is
shown that both type of methods show an exponential convergence rate of λmax; and differences between the methods
are insignificant. However, the Galerkin–collocation method based on the Laguerre functions shows an exponential
convergence rate of Γmax, while the collocation method leads to a slower convergence of this quantity. It is shown that
Γmax converges faster than λmax for the Galerkin–collocation method based on the Laguerre functions.

The Galerkin collocation method based on the Laguerre functions might be successfully applied as the wall-normal
approximation for more complex boundary-layer stability problems (see the recent work [24]).

The author of this work declares that he has no conflicts of interest.
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Abstract. Approximation of spectral and boundary-value problems arising in the stability analysis
of incompressible boundary layers is considered. As an alternative to the collocation method with
mappings, the Galerkin–collocation method based on Laguerre functions is adopted. A robust numerical
implementation of the latter method is discussed. The methods are compared within the stability analysis of
the Blasius and Ekman layers. The Galerkin-collocation method demonstrates an exponential convergence
rate for scalar stability characteristics and has a number of advantages.
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