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Рассмотрены линейные уравнения Вольтерра первого рода. Выделен класс таких задач, которые имеют един-
ственное решение, для численного решения которых предложены коллокационно-вариационные методы.
Суть данных алгоритмов заключается в том, что приближенное решение находят в узлах равномерной сет-
ки (условие коллокации), которые дают недоопределенную систему линейных алгебраических уравнений.
Полученную таким образом систему дополняют условием минимума целевой функции, которая аппрокси-
мирует квадрат нормы приближенного решения. В итоге получают задачу квадратичного программирования:
целевая функция (квадрат нормы приближенного решения) — квадратичная, ограничения (условия коллока-
ции) — равенства. Данная задача решается методом множителей Лагранжа. Детально рассмотрены достаточ-
но простые методы третьего порядка. Приведены результаты расчетов тестовых задач. Обсуждается дальней-
шее развитие данного подхода для численного решения других классов интегральных уравнений. Библ. 12.
Табл. 4.
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1. ВВЕДЕНИЕ

Статья посвящена численному решению линейных интегральных уравнений Вольтерра вида

t∫︁
0

K(t, τ)x(τ) dτ = f (t), 0 ≤ τ ≤ t ≤ 1, (1)

где f (t) и K(t, τ) — заданные функции с достаточно гладкими элементами, x(t) — искомая функция. При

K(t, t) ̸= 0 ∀t ∈ [0, 1], f (0) = 0, (2)

и непрерывных функциях K(t, t),K′t (τ, t)|τ=t, f ′(t) существует единственное непрерывное решение данной задачи
(см., например, [1], [2]).

Подходы к численному решению уравнения (1) с условием (2) можно найти в монографиях [4]–[6] (колло-
кационные и многошаговые методы), [7] (блочные методы), диссертации [8]. В [9] представлены результаты по
данной тематике и трудности, которые возникают при разработке методов решения уравнения (1).

В настоящей работе предложены одношаговые методы решения обозначенных задач, которые себя отлич-
но зарекомендовали при решении дифференциально-алгебраических уравнений (см. [10] и приведенную там
библиографию) и являются обобщением статьи [11].

1) Работа выполнена при финансовой поддержке РНФ (код проекта № 22-11-00173).
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2. КВАДРАТУРНЫЕ ФОРМУЛЫ И АЛГОРИТМЫ

При построении методов решения исходной задачи нам потребуются некоторые результаты из теории при-
ближенного интегрирования. Подробно остановимся на четырехточечных квадратурных формулах третьего по-
рядка, которые потребуются для дальнейшего изложения.

Зададим на отрезке [0, 1] равномерную сетку ti = ih, i = 0, 1, . . . ,N, h = 1/N, и положим, что для достаточно
гладкой функции g(t) известно g(ti). Тогда

ti∫︁
ti−3

g(t) dt ≈ h[b1gi−3 + b2gi−2 + b3gi−1 + b4gi], (3)

ti−1∫︁
ti−3

g(t) dt ≈ h[a1gi−3 + a2gi−2 + a3gi−1 + a4gi], (4)

где коэффициенты a j, b j, j = 1, 4, удовлетворяют условиям третьего порядка, т.е. квадратурные формулы (3), (4)
точны для любых полиномов степени не выше трех.

Опуская элементарные выкладки, получим, что данные коэффициенты являются решением СЛАУ⎛⎝ 1 1 1 1
0 1 2 3
0 1 4 9

⎞⎠
⎛⎜⎜⎝

a1 b1
a2 b2
a3 b3
a4 b4

⎞⎟⎟⎠ =
⎛⎝ 2 3

2 4.5
8/3 9

⎞⎠ . (5)

Полагая в (5) a1 = a, b1 = b — свободные параметры, получим, что решением СЛАУ (5) являются

(a1, a2, a3, a4) = (a, 7/3 − 3a,−2/3 + 3a, 1/3 − a), (6)

(b1, b2, b3, b4) = (b, 2.25 − 3b, 3b, 0.75 − b). (7)

Приступим к описанию методов приближенного решения ИУВ (1) предполагая, что x0 = x(0) задано или
заранее вычислено. Данные алгоритмы основаны на квадратурных формулах (3) и (4) с коэффициентами, удо-
влетворяющими соотношениям (6) и (7) соответственно. Для простоты изложения положим N кратно трем и
обозначим

fi = f (ti), Ki j = K(ti, t j), xi ≈ x(ti).

В этом случае для уравнения (1) будем иметь

ti−1∫︁
0

K(ti−1, τ)x(τ) dτ =

3h∫︁
0

K(ti−1, τ)x(τ) dτ +

5h∫︁
3h

K(ti−1, τ)x(τ) dτ + · · · +

ti−1∫︁
ti−3

K(ti−1, τ)x(τ) dτ =

= h[b1Ki−1,0x0 + b2Ki−1,1x1 + b3Ki−1,2x2 + b4Ki−1,3x3) + (b1Ki−1,3x3 + b2Ki−1,4x4+

+b3Ki−1,5x5 + b4Ki−1,6x6) + · · · + (a1Ki−1,i−3xi−3 + a2Ki−1,i−2xi−2 + a3Ki−1,i−1xi−1 + a4Ki−1,ixi)] =

= h
i−3∑︁
j=0

pi jKi−1, jx j + h[a1Ki−1,i−3xi−3 + a2Ki−1,i−2xi−2 + a3Ki−1,i−1xi−1 + a4Ki−1,ixi] = fi−1

(8)

и

ti∫︁
0

K(ti, τ)x(τ) dτ =

3h∫︁
0

K(ti, τ)x(τ) dτ +

6h∫︁
3h

K(ti, τ)x(τ) dτ + · · · +

ti∫︁
ti−3

K(ti, τ)x(τ) dτ =

= h[(b1Ki,0x0 + b2Ki,1x1 + b3Ki,2x2 + b4Ki,3x3) + (b1Ki,3x3 + b2Ki,4x4 + b3Ki,5x5 + b4Ki,6x6) + · · · + (b1Ki,i−3xi−3+

+b2Ki,i−2xi−2 + b3Ki,i−1xi−1 + b4Ki,ixi)] = h
i−3∑︁
j=0

pi jKi, jx j + h[b1Ki,i−3xi−3 + b2Ki,i−2xi−2 + b3Ki,i−1xi−1 + b4Ki,ixi] = fi,

(9)

i = 3, 6, 9, . . . ,N.
Точки ti−1 и ti будем называть коллокационными точками или узлами коллокации.
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Полагая x(0) = x0 заданным и используя вышеприведенные квадратурные формулы, получим, что xi−2, xi−1
и xi являются решением СЛАУ

(︂
ha2Ki−1,i−2 ha3Ki−1,i−1 ha4Ki−1,i
hb2Ki,i−2 hb3Ki,i−1 hb4Ki,i

)︂⎛⎝ xi−2
xi−1
xi

⎞⎠ = −h

⎛⎝ ∑︀i−3
j=0 pi jKi−1, jx j + a1Ki−1,i−3xi−3∑︀i−3

j=0 pi jKi, jx j + b1Ki,i−3xi−3

⎞⎠ +
⎛⎝ fi−1

fi

⎞⎠
или в векторно-матричном виде

AiXi = Bi, (10)

где

Ai =

(︂
ha2Ki−1,i−2 ha3Ki−1,i−1 ha4Ki−1,i
hb2Ki,i−2 hb3Ki,i−1 hb4Ki,i

)︂
, Xi = (xi−2, xi−1, xi)Т,

Bi = −h

⎛⎝ ∑︀i−3
j=0 pi jKi−1, jx j + a1Ki−1,i−3xi−3∑︀i−3

j=0 pi jKi, jx j + b1Ki,i−3xi−3

⎞⎠ +
⎛⎝ fi−1

fi

⎞⎠ .
Данные системы имеют размерность (2 × 3), т.е. являются недоопределенными.
Будем смотреть на СЛАУ (10) как на ограничения типа равенств для поиска минимума квадрата нормы при-

ближенного решения yi(t), t ∈ [ti−3, ti], yi+1(ti) = yi(ti), t ∈ [ti−3, ti] i = 3, 4, . . . ,N,В этом случае мы будем иметь задачу
на условный минимум

‖y‖2 → min (11)

при ограничениях типа равенств (10).
Если норма функции y(xi−3, xi−2, xi−1, xi, t) выбрана неудачно, например, в пространстве непрерывных или

непрерывно-дифференцируемых функций, то задача (11) с ограничениями (10) будет достаточно сложной, по-
этому будем считать

1) y(t) = L3(xi−3, xi−2, xi−1, xi, t) — интерполяционный полином третьей степени, проходящий через точки
(xi−m, ti−m), m = 0, 1, 2, 3;

2)

‖y(t)‖2 = ‖L3(·)‖2 =
r∑︁

m=0

ti∫︁
ti−3

L(m)
3 (t)L(m)

3 (t) dt, 0 ≤ r ≤ 3. (12)

Здесь мы ограничимся частным случаем (12), а именно, r = 3 и для вычисления определенного интеграла в
формуле (12) воспользуемся какой-либо известной квадратурной формулой ( см., например, [12]). Тогда имеем

‖L3(·)‖2 =
3∑︁

m=0

ti∫︁
ti−3

L(m)
3 (xi−3, xi−2, xi−1, xi, t)L

(m)
3 (xi−3, xi−2, xi−1, xi, t) dt ≈

≈ h

⎡⎣⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

α
0
mxi−3+m

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)/h

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)/h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+

+

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α3
mxi−3+m)/h3

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2
⎤⎦ = φ(xi−2, xi−1, xi),

(13)

где
∑︀3

m=0(αq
mxi−3+m)/hq ≈ x(q)(ξp

i ), ξp
i ∈ [ti−3, ti], а норма конечномерного вектора здесь понимается как евклидова.

Коэффициенты α
q
m зависят от выбора квадратурной формулы и формулы приближенного вычисления

L(m)
3 (xi−3, xi−2, xi−1, xi, t).

Коэффициентыα3
m определены единственным образом из очевидного равенства∆3xi = (xi−3xi−1+3xi−2−xi−3),

т.е. α3 = (1,−3, 3,−1).
Например, при t̄ = ti−3 коэффициенты α0 = (0, 0, 0, 1), α1 = 1/6(2,−9, 18,−11), α2 = (−1, 4,−5, 2).
При t̄ = ti−2 коэффициенты α0 = (0, 0, 1, 0), α1 = 1/6(−1, 6,−3,−2), α2 = (0, 1,−2, 0).
При t̄ = ti−1 коэффициенты α0 = (0, 1, 0, 0), α1 = 1/6(2, 3,−6, 1), α2 = (1,−2, 1, 0).
При t̄ = ti коэффициенты α0 = (1, 0, 0, 0), α1 = 1/6(11,−18, 9,−2), α2 = (2,−5, 4,−1).
Таким образом, учитывая, что x0 задано, на каждом отрезке интегрирования [ti−3, ti], i = 3, 6, . . . ,N, имеем

задачу квадратичного программирования: найти минимум целевой функции φ(xi−2, xi−1, xi) при ограничениях
типа равенств (10).
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В силу того что умножение целевой функции (13) на произвольное ненулевой число не влияет на нахожде-
ние аргумента условного минимума, то данная задача эквивалентна задаче

minψ(xi, xi−1, xi−2) = h6

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

α
0
mxi−3+m

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h4

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)/h

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)/h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ ‖∆3xi‖
2 (14)

с ограничениями (10).
Так как первое, второе и третье слагаемые в (14) содержат малые слагаемые порядка h6, h4, h2 соответствен-

но, то их можно отбросить (или часть из них). Например, ограничиваясь в (14) только третьим и четвертым
слагаемым или только последним получим, две задачи математического программирования:

1) найти

minψ1(xi, xi−1, xi−2) = h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)/h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ ‖∆3xi‖
2, (15)

2) найти
minψ2(xi, xi−1, xi−2) = ‖∆3xi‖

2 (16)

при ограничениях типа равенств (10).
Задачи (15), (10) и (16), (10) можно решить методом множителей Лагранжа. Так как целевые функции (15)

и (16) являются квадратичными, а ограничения (10) есть равенства, то решением данных задач является реше-
ние соответствующих СЛАУ. Например, решением задач (16) с ограничениями (10) является решение СЛАУ
вида

𝒜iXi = ℬi, (17)

где

𝒜i =

⎛⎝ 3 −3 1
hb2Ki−1,i−2 hb3Ki−1,i−1 hb4Ki−1,i
ha2Ki,i−2 ha3Ki,i−1 ha4Ki,i

⎞⎠ , (18)

Xi = (xi−2, xi−1, xi)⊤,

ℬi = (xi−3, B⊤i )⊤,

где вектор Bi определен по формуле (10).
Утверждение. Пусть для интегрального уравнения (1) выполнены условия:
1) элементы K(t, τ), f (t) принадлежат классу C4

[0,1];
2) K(t, t) ̸= 0∀t ∈ [0, 1], f (0) = 0, x0 = x(0).
Тогда справедлива оценка ‖xi − x(ti)‖ = O(h3), i = 3, 4, . . . ,N, где xi−2, xi−1, xi являются решениями задач (17).
Доказательство основано на дискретном аналоге леммы Гронуолла–Беллмана (см. [3], [6]).
Отметим, что если положить в (12) r < 3, то получим другое семейство алгоритмов. Например, при r = 2 (по

аналогии с задачей (14)) будем иметь задачи на условный минимум квадратичной функции:
1) найти

minΩ(xi, xi−1, xi−2) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h4

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α0
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(19)

при ограничениях типа равенств (10).
При r = 1 будем иметь
2) найти

minΓ(xi, xi−1, xi−2) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α0
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(20)

при ограничениях типа равенств (10).
По аналогии с (13) данные задачи эквивалентны поиску условного минимума функций Ω(xi, xi−1, xi−2) и

Γ(xi, xi−1, xi−2) соответственно.
Так же, как и для случая r = 3, для случая r = 2 в формуле (19) слагаемые, содержащие h4 или h4 и h2, можно

отбросить. А для r = 1 можно отбросить слагаемое, содержащее h2.
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Тогда получим семейство алгоритмов: для r = 2 найти

minΩ1(xi, xi−1, xi−2) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

+ h2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(21)

или

minΩ2(xi, xi−1, xi−2) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α2
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(22)

при ограничениях типа равенств (10).
Для r = 1 будем иметь семейство методов: найти

minΓ1(xi, xi−1, xi−2, h) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒

3∑︁
m=0

(α1
mxi−3+m)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

(23)

при ограничениях типа равенств (10).
Для решения задач (21)–(23) можно применять метод множителей Лагранжа. Условный минимум функций

Ω, Ω1, Ω2 и Γ, Γ1 в этом случае находится точно из решения соответствующих СЛАУ.
Отметим, что исследование на устойчивость и скорость сходимости методов (19)–(23) представляет собой

отдельный интерес. Свойства данных алгоритмов будут зависеть не только от выбора квадратурных формул (см.
формулу (6)), т.е. от параметров a и b, но и от выбора аппроксимации производных решения (см. формулы (12)
и (13)), т.е. от параметров αl

m, 0 ≤ l,m ≤ 3. Были рассмотрены различные варианты таких подходов. Предвари-
тельный анализ данных алгоритмов показал, что они обладают свойством устойчивости.

3. ЧИСЛЕННЫЕ РАСЧЕТЫ

В данном разделе приведены расчеты тестовых примеров по алгоритму (17) с параметрами a = 1/3(1, 4, 1, 0)⊤,
b = 1/4(3, 0, 9, 0)⊤. Результаты представлены в виде таблиц. Принято обозначение er = maxi=1,N |x(ti − xi|.

Пример 1 (см. [6], с. 149). Рассмотрим ИУ

(r2 + 1)
∫︁ t

0
cos(t − τ)x(τ)dτ = sin(t) + r

(︀
exp(rt) − cos(t)

)︀
, t ∈ [0, 1],

точное решение которого x(t) = exp(rt). Результаты расчетов при r = 1, a = 1/3(1, 4, 1, 0)⊤, b = 1/4(3, 0, 9, 0)⊤

представлены в табл. 1.
Результаты расчетов этого примера при значении параметров a = 1/3(0, 7,−2, 1)⊤, b = 1/4(0, 9, 0, 3)⊤, r = 1

представлены в табл. 2.
Пример 2 (см. [6], с. 517). Рассмотрим ИУ

α

∫︁ t

0
exp(α(t − τ)x(τ)dτ = (exp(αt) − exp(−αt))/2, t ∈ [0, 1],

точное решение которого x(t) = exp(−αt). Результаты расчетов при значениях параметров α = 3,
a = 1/3(1, 4, 1, 0)⊤, b = 1/4(3, 0, 9, 0)⊤ представлены в табл. 3.

Результаты расчетов данного примера при значении параметров a = 1/3(0, 7,−2, 1)⊤, b = 1/4(0, 9, 0, 3)⊤, α = 3
представлены в табл. 4.

Численные расчеты данных примеров согласуются с утверждением. Кроме приведенных выше примеров
были проведены многочисленные расчеты других тестовых примеров, которые не содержат жестких компо-
нент, при различных выборах параметров a и b по алгоритму (17). Данные эксперименты также хорошо согла-
суются с утверждением.

Таблица 1. Численные расчеты примера 1 при r = 1, a = 1/3(1, 4, 1, 0)⊤, b = 1/4(3, 0, 9, 0)⊤

h 0.1 0.05 0.025

er 0.0039 0.0006 0.00009

Таблица 2. Численные расчеты примера 1 при r = 1, a = 1/3(0, 7,−2, 1)⊤, b = 1/4(0, 9, 0, 3)⊤

h 0.1 0.05 0.025

er 0.0027 0.0004 0.00006
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Таблица 3. Расчеты для примера 2 при значениях параметров α = 3, a = 1/3(1, 4, 1, 0)⊤, b = 1/4(3, 0, 9, 0)⊤

h 0.1 0.05 0.025

er 0.085 0.012 0.0018

Таблица 4. Результаты расчетов примера 2 при значении параметров α = 3, a = 1/3(0, 7,−2, 1)⊤, b = 1/4(0, 9, 0, 3)⊤

h 0.1 0.05 0.025

er 0.02 0.0035 0.00052

4. ЗАКЛЮЧЕНИЕ

В настоящей статье был выделен класс интегральных уравнений Вольтерра первого рода, для численно-
го решения которых предложены коллокационно-вариационные методы третьего порядка. Данные алгорит-
мы сводятся к решению задачи математического (квадратичного) программирования – целевая функция-
квадратичная (некий аналог квадрата нормы приближенного решения) с ограничениями типа равенств (усло-
вие коллокации). Такая задача эквивалентна нахождению решения невырожденной СЛАУ. Численные расчеты
показали перспективность дальнейшей разработки данного подхода. Далее планируется детальное исследова-
ние коллокационно-вариационных методов (21)–(23), методов более высокого порядка и для более общих за-
дач, в частности, для интегральных уравнений Вольтерра, имеющих степень неустойчивости (см. [3]) больше
единицы и уравнений первого рода с ядром, содержащим слабую особенность.
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Abstract. Linear Volterra equations of the first kind are considered. A class of problems that have a single
solution is identified, and collocation-variational methods are proposed to solve them numerically. The
essence of these algorithms is that the approximate solution is found at the nodes of a uniform grid (the
collocation condition) that yield an underdetermined system of linear algebraic equations. The system thus
obtained is supplemented by the condition of minimum of the objective function, which approximates the
squared norm of the approximate solution. As a result, a quadratic programming problem is obtained, viz.
the objective function (the squared norm of the approximate solution) is quadratic, and the constraints
(the collocation conditions) are equalities. This problem is solved by the method of Lagrange multipliers.
Sufficiently simple third-order methods are considered in detail. The calculation results for test problems
are given. Further development of this approach to solve other classes of integral equations numerically is
discussed.
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